网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
工艺参数对TC6合金叶片锻造变形的影响
英文标题:Effect of processing parameters on TC6 alloy airfoil blade during forging process
作者:房冬冬 李淼泉 罗皎 
单位:西北工业大学材料学院 
关键词:TC6合金叶片 弹塑性 残余应力 数值模拟 
分类号:TG316
出版年,卷(期):页码:2010,35(4):160-165
摘要:

利用热力耦合弹塑性有限元法对TC6合金叶片锻造过程进行三维数值模拟。研究了工艺参数对叶片锻造过程中温度场、应力应变场的影响及叶片锻造卸载后残余应力的分布情况,从而揭示合金叶片锻造过程的成形规律。研究结果表明,变形温度、摩擦因子和变形速度等工艺参数对叶片的等效应力和温度场有显著影响,而对等效应变的影响相对较小;叶片终锻卸载后残余应力分布不均匀,边缘部位残余应力较大,而内部残余应力较小,锻造过程中的应力集中区在卸载后同样容易出现残余应力的集中。

3D simulation for the forging of TC6 alloy airfoil blade was carried out with the help of the elastic-plasticity finite-element method. According to the simulation, the effects of processing parameters on the temperature, equivalent stress and equivalent strain were studied in the forging process,and the distribution of residual stress after unload was also discussed. The results indicate that the deformation temperature, friction factor and strain rate have significant effects on the temperature and equivalent stress, but have no significant effects on the equivalent strain. The distribution of the residual stress after unload is inhomogeneous during final forging, the residual stress on the edge of the blade is higher than that inside the blade and the residual stress concentration zones after unload appear in the stress concentration zones during the forging process.

基金项目:
作者简介:
参考文献:


[1]Hu Z M, Dean T A. Aspects of forging of titanium alloys and the production of blade forms [J]. Journal of Materials Processing Technology, 2001, 111(13):10-19.
[2]Zhang S H, Wang Z R, Wang Z T. Some new features in the development of metal forming technology [J]. Journal of Materials Processing Technology, 2004, 151(13):39-47.
[3]Gao T, Yang H, Liu Y L. Influence of processing parameters on microstructure evolution during blade precision forging process of titanium alloy[J]. Rare Metal Materials and Engineering, 2005, 34(5):781-784.
[4]Zhang S H, Sun C, Wang Z T. Finite element simulation on press forging of magnesium alloy AZ31 sheets[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1):269-272.
[5]Wang M H, Zhu D. Simulation of fabrication for gas turbine blade turbulated cooling hole in ECM based on FEM [J]. Journal of Materials Processing Technology, 2009, 209(4):1747-1751.
[6]Yang D Y, Lee N K, Yoon J H.A 3-dimensional simulation for isothermal turbine blade forging by the rigid\|viscoplastic finite element method[J].Journal of Materials Engineering and Performance, 1993, 2(1):119-124.
[7]Na Y S, Yeom J T, Park N K, et al. Simulation of microstructures for alloy 718 blade forging using 3D FEM simulator[J]. Journal of Materials Processing Technology, 2003, 141(3): 337-342.
[8]薛善坤, 刘雪梅, 熊爱明, 等. TC4合金叶片精锻过程的二维数值模拟[J].机械科学与技术,2004, 23(7):793-795.
[9]张会, 张昌明, 姚泽坤. TC11钛合金叶片等温校正工艺研究[J].特种铸造及有色合,2008,28(6):469-471.
[10]Bariani P F, Bruschi S, Negro T D. Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades[J].International of Machine Tools and Manufacture,2004,44(9):45-951.
[11]Gao T, Yang H, Liu Y L. Backwardtracing simulation of precision forging process for blade based on 3D FEM[J].Transactions of Nonferrous Metals Society of China,2006,16(2):639-644.
[12]Lv C, Zhang L W, Mu Z J. 3D FEM simulation of the multi\|stage forging process of a gas turbine compressor blade[J].Journal of Materials Processing Technology,2008,198(13):463-470.
[13]Maheri A, Noroozi S, Vinney J.Combined analytical/FEA\|based coupled aero structure simulation of a wind turbine with bend\|twist adaptive blades[J].Renewable Energy,2007, 32(10):1753-1767.
[14]李晓丽. 钛合金高温变形时跨层次模型及数值模拟[D].西安:西北工业大学, 2005.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9