网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铸态ZnAl10Cu2合金热变形本构方程
英文标题:Constitutive equation of hot deformation for casting ZnAl10Cu2 alloy
作者:邬小萍 李德富 郭胜利 许晓庆 贺金宇 胡捷  
单位:北京有色金属研究总院 
关键词:ZnAl10Cu2合金 热变形 Kumar模型 热变形激活能 
分类号:TB331
出版年,卷(期):页码:2011,36(1):119-123
摘要:

在Gleeble-3500热模拟机上采用等温压缩实验研究了ZnAl10Cu2合金在温度为210~300 ℃、应变速率为10-2~10 s-1条件下的热变形行为,获得了该合金热变形过程中的真应力-应变曲线。结果表明:ZnAl10Cu2合金的峰值流变应力随温度升高而降低,随应变速率的提高而增大。通过双曲正弦模型确定了该合金的高温材料常数,Q=144.161kJ/mol, n=4.443,A=4.7×1012s-1,α=0.01037 MPa-1,并采用修正的Kumar模型建立了考虑应变对流变应力影响的高温本构关系,其拟合度为9.14%。

The hot deformation behavior of ZnAl10Cu2 alloy at strain rate ranging from 0.01 to 10.0 s-1 and deformation temperature ranging from 210 to 300 ℃ was studied by isothermal compression performed on a Gleeble-3500 simulated machine. The true stress-true strain curves of ZnAl10Cu2 alloy were obtained. The results show that the peak flow stress decreases with increasing temperature and increases with increasing strain rate. High temperature material constants were obtained using the hyperbolic-sine mathematics model, Q=144.161 kJ·mol-1,n=4.443,A=4.7×1012 s-1,α=0.01037MPa-1,and established the hot deformation constitutive relationship considering the effects of strain on flow stress by using modified Kumar model, the goodness of fit was 9.14%.

基金项目:
十一五国家科技支撑计划(2009BAE71B03)
作者简介:
参考文献:


[1]  陆伟,严彪.铸造锌铝合金的研究进展及其应用[J].上海有色金属,2004,25(1):13-14.
[2]  孙连超,田荣璋.锌及锌合金物理冶金学[M].长沙:中南工业大学出版社,1994 .
[3]  琚宏昌.4×60 M回转窑托轮轴瓦应用锌合金替代铜合金的可行性研究[J].安阳大学学报,2003,(3):10-14.
[4]  蔡强.锌合金[M].长沙:中南工业大学出版社,1987.
[5]  林高用,郑小燕,周佳,等.一种锌基合金热变形行为的试验模拟[J].机械工程材料,2007,31(7):60-65.
[6]  栾娜, 李落星, 李光耀,等.AZ80 镁合金的高温热压缩变形行为[J].中国有色金属学报, 2007 , 17 ( 10):1678-1684.
[7]  林高用,张辉,孟力平,等.7075 铝合金热压缩变形流变应力[J]. 中国有色金属学报,2001 , 11(3) :412-415.
[8]  洪权,张振祺.Ti-6Al-2Zr-1Mo-1V合金的热变形行为[J].航空材料学报,2001,24(1):10-12.
[9]  王智祥,刘学峰,谢建新.AZ91镁合金高温变形本构关系[J].金属学报,2008,44(11):1378-1383.
[10]  Yang X,Miura H,Sakai T. Dynamic nucleation of new grains in magnesium alby during hot deformation[J]. Materials Science Forum,2003,419-422(1):515-520.
[11]  Tan J C,Tan M J.Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J].Materials Science Engnieering,2003, A339(1-2):124-132.
[12]  Yang X,Miura H,Sakai T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot degormatio[J].Materials Transactions, 2003, 44(1):197-203.
[13]  Galiyev A,Kaibyshev R,Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J].Acta Materialia,2001,49:1199-1207.
[14]  Galiyev A,Kaibyshev R,Sakai T.Continuous dynamic recrystallization in magnesium alloy[J].Materials Science Forum,2003,419-422:509-514.
[15]   Barnett M R.Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J].Journal of Light Metals,2001(1):167-177.
[16]  Barnett M R.Recrystallization during and follo wing hot working of magnesium alloy AZ31[J].Materials Science Forum,2003,419-422:503-508.
[17]  Poirier J P. Plastic Deformation of Crystal at Elevated Temperature[M]. Guan D L,translate.Dalian:Dalian university of Technology Press,1989.
[18]  Shi H,McLaren A J,Sellars C M ,et al.Constitutive equations for high temperature flow stress of aluminum alloys[J].Materials Science and Engnieering A,1997,13(3):210-216.
[19]  Poirier J P.晶体的高温塑性变形[M]. 关德林,译.大连:大连理工大学出版社,1989.
[20]  MSC.Software 2003[M]. Theory and User Information,1992.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9