网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
GH4169合金叶片制坯成形工艺数值模拟优化
英文标题:Numerical simulation optimization of blocking forming process for GH4169 alloy blade
作者:王芳 齐广霞 曹娜 
单位:沈阳理工大学 
关键词:GH4169合金叶片 制坯数值模拟 工艺优化 
分类号:TG316.3
出版年,卷(期):页码:2012,37(2):148-153
摘要:

基于塑性有限元原理,应用Deform数值模拟平台,通过变形温度、压下量对挤杆成形及变形速度、摩擦条件对镦头成形的各场量进行深入研究,全面揭示了GH4169合金叶片制坯过程成形规律,并对其工艺参数进行优化。结果表明:适当的提升锻造温度有利于挤杆锻后温度的平稳分布;变形温度的增大使杆部各区域金属流动速度差异逐渐缩小,挤杆为非匀速变形过程;杆部从伸长成形到最终成形阶段,应变梯度先减小后大幅上升;随着变形速度的加大,镦头件等效应变速率越来越大且分布愈见均匀,所受最大主应力拉应力作用越强;摩擦因子越大,损伤值成递增式增加,榫头各截面位移场值相差较大,高摩擦因子下材料充型速度不均匀。

The laws of blocking process forming on GH4169 alloy blade were revealed and then process parameters were optimized  respectively through the research of deformation temperature, pressure on extrusioned rod quantity of the forming and deformation speed, friction conditions on each fields of the head forming based on the plastic finite element theory and applying Deform numerical simulation platform. The results show that appropriately increasing of the extrusioned rod forging temperature can make the end forging temperature to be stationary distributed; with increasing of deformation temperature to the rod, the flow speed difference between regional metals is reduced gradually, and rodextrusion is the nonlinear deformation process; for the condition of the rod from elongation forming to the final shape stage, the strain gradient is reduced first and then rised sharply; with the increase of deformation speed, the equivalent strain rate of upset head part becomes bigger and bigger and the distribution is becoming more uniform, and the maximum principal stress of tensile stress has the stronger effect. The greater the friction factor, the damage value becomes more increasingly, each section of tenons displacement field value has large differences ,and under high friction factor, the material filling speed is uneven.

基金项目:
作者简介:
参考文献:


[1]刘郁丽,杨合,詹梅. 摩擦对叶片精锻预成形毛坯放置位置影响规律的研究[J].机械工程学报,2003,39(1):97-100.
[2]王鹏.基于数值模拟的叶片精锻过程优化设计[D].西安:西北工业大学,2005.
[3]左旭,陈军,卫原平,等. 塑性成形三维数值模拟中的模具几何描述技术[J]. 锻压技术,1997, 22(6):59-61.
[4]钟杰,胡楚江,郭成. 叶片精密锻造技术的发展现状及其展望[J].锻压技术, 2008, 33 (1): 1-4.
[5]詹梅,刘郁丽,杨合. 三维有限元模拟等值线生成的新方法[J]. 重型机械,2000, (1):36-38.
[6]刘郁丽,杨合,詹梅.单榫头叶片叶身精锻成形规律[J].机械工程学报, 2002,38(6):111-114.
[7]张杰刚. TC21钛合金锻造工艺的数值模拟研究[D]. 南京:南京航空航天大学, 2007.
[8]史延沛,李淼泉,罗皎. TC4钛合金叶片锻造过程中晶粒尺寸的数值模拟[J]. 锻压装备与制造技术, 2009, (2) :101-104.
[9]透平机械现代制造技术丛书编委会.叶片制造技术[M].北京:科学出版社,2002.
[10]刘郁丽,杨合,詹梅.单榫头叶片锻造过程应力应变场的三维有限元分析[J].西北工业大学学报, 2002, 20 (1):137-140.
[11]赵新海,赵国群,王广春,等. 锻造过程优化设计目标的研究[J]. 锻压装备与制造技术,2001, (1):48-52.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9