网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
7475铝合金壁板蠕变成形筋条失稳及数值模拟
英文标题:Forming stability and numerical simulation of creep forming for 7475 aluminum alloy integrally stiffened panel
作者:吴阳 郑英 邓运来 张劲 
单位:中南大学 湖南交通职业技术学院 
关键词:铝合金 整体壁板 蠕变成形 高筋条 
分类号:TG306;TG146.2+1
出版年,卷(期):页码:2013,38(6):56-61
摘要:

对于筋条整体壁板的蠕变成形,防止筋条塌陷是该技术成形的关键。采用某单曲率整体加筋壁板进行了热压罐成形试验,应用有限元软件ABAQUS/Standard,模拟了蠕变成形的全过程,通过对比二者的模拟结果验证了有限元模型的正确性。分析了成形过程中筋条的应力应变分布,给出了筋条的临界失稳应力公式,针对成形缺陷提出了夹具成形的优化工艺。实验结果表明,该优化工艺可以使筋条临界失稳压力提高4倍,最大侧向位移由1.4mm减少到0.2mm,使高筋条壁板成形的皱曲缺陷得到明显控制。
 

To prevent collapse of the high ribs for the integrally panel is a key technology for creep forming. Integrally stiffened panel with single curvature was used for the autoclave test, and ABAQUS / Standard was applied to simulate the forming process of creep forming. The right model can be proved by contrasting experimentation and simulation results. The distributions of the stress and strain were analyzed and the critical buckling stress formula was put forward. The optimization of the fixture forming was designed for the buckling defects so that the critical buckling stress was four times larger than it was before, the largest lateral displacement was cut from 1.4mm to 0.2mm. As a result, the panel defects can be optimized obviously.

基金项目:
国家重点基础研究发展计划(973)项目(2010CB731700)
作者简介:
参考文献:


[1]Adachi T, Kimura S, Nagayama T, et al. Age forming technology for aircraft wing skin[A]. 9th International Conference on Aluminium Alloys[C]. Australia, 2004.
[2] Ashby, M F, Ferreira P J, Schodek D L. Design environments and systems[A]. Nanomaterials, Nanotechnologies and Design 2009[C]. Boston,2009.
[3] Guines D, Gavrus A, Ragneau E. Numerical modeling of integrally stiffened structures forming from creep age forming technique[J]. International Journal of Material Forming, 2008, 1(1): 1071-1074.
[4] Ho K C, Lin  J, Dean T A. Modelling of springback in creep forming thick aluminum sheets[J]. International Journal of Plasticity, 2004,(20):733-751.
[5] Huang L, Wan M, Chi C, et al. FEM analysis of spring-backs in age forming of aluminum alloy plates[J]. Chinese Journal of Aeronautics, 2007,(20): 564-569.
[6] Kentfield J A C. Aircraft with outboard horizontal stabilizers, history, current status, development potential[J]. Progress in Aerospace Sciences,2009, 45(6-8): 169-202.
[7] Li C, Wan M, Wu X D, et al. Constitutive equations in creep of 7B04 aluminum alloys[J]. Materials Science and Engineering: A, 2010, 527(16-17): 3623-3629.
[8] Yan Y, Wan M, Wang H. FEM equivalent model for press bend forming of aircraft integral panel[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(2): 414-421.
[9] 赖松柏,于登云,陈同祥.整体壁板结构弯曲成形分析的等效塑性模型[J].宇航学报,2012,33(6):809-815.Lai S P, Yu D Y, Chen T X. Plastic equivalent model for intergrally stiffened panel forming[J]. Journal of Astronautics,2012, 33(6): 809-815.
[10]李鹰,季秀升.壁板时效成形技术研究[J].辽宁经济,2007,1(6):54-55.Li Y, Ji X S. Investigation on the age forming of the panels[J]. LiaoNing Economy,2007, 1(6): 54-55.
[11]刘劲松,张士宏,曾元松,等.网格式整体壁板增量成形有限元模拟[J].材料科学与工艺,2004,2(5):515-517.Liu J S, Zhang S H, Zeng Y S, et al. Simulation of incremental forming on integral panel skin with grid-type ribs[J]. Materials Science & Technology, 2004, 2(5): 515-517.
[12]曾元松, 黄遐.大型整体壁板成形技术[J].航空学报,2008,29(3):721-727.Zeng Y S, Huang X. Forming technologies of large integral panel[J]. Acta Aeronautica et Astronautica Sinica, 2008,29(3): 721-727.
[13]甘忠,朱加赞,张磊,等.高筋条整体壁板时效成形二维回弹补偿[J].机械科学与技术,2012,31(3):452-455.Gan Z, Zhu J Z, Zhang L, et al. The 2D springback compensation in the ageing forming of integral panel[J]. Mechanical Science and Technology, 2012, 31(3): 452-455.
[14]王俊彪,刘中凯,张贤杰.大型机翼整体壁板时效应力松弛成形技术[A].大型飞机关键技术高层论坛暨中国航空学会2007年学术年会[C].深圳,2007.Wang J B, Liu Z K, Zhang X J. The aging stress relaxation forming technology of large integral wing panel[A]. Key Technology of Large Aircraft Top BBS and China Aviation Association Academic Conference in 2007[C]. Shenzhen, 2007.
[15]韩志仁,戴良景,张凌云.飞机大型蒙皮和壁板制造技术现状综述[J].航空制造技术, 2009,1(4):64-66.Han Z R, Dai L J, Zhang L Y. Current status of large aircraft skin and panel manufacturing technologies[J]. Aeronautical Manufacturing Technology, 2009,1(4): 64-66.
[16]林瑜华.大厚度网络状机翼整体壁板成形制造技术新探[A].大型飞机关键技术高层论坛暨中国航空学会2007年学术年会[C].深圳,2007.Lin Y H. New investigation on manufacturing technology of the integral wing panel with big thickness[A]. Key Technology of Large Aircraft Top BBS and China Aviation Association Academic Conference in 2007[C]. Shenzhen, 2007.
[17]黄遐,曾元松.7075铝合金蠕变时效成形过程数值模拟[J].塑性工程学报,2010,17(6):51-54.Huang X, Zeng Y S. The study on numerical simulation of creep age forming for aluminum 7075[J]. Journal of Plasticity Engneering, 2010, 17(6): 51-54.
[18]Jeunechamps P P. A closed form technique to predict springback in creep age-forming[J]. International Journal of Mechanical Sciences, 2006,48(6): 621-629.
[19]Karafillis A P, Boyce M C. Tooling design in sheet metal forming using springback calculations[J]. International Journal of Mechanical Sciences, 1992, (34): 113-131.
[20]Karafillis A P, Boyce M C. Tooling and binder design for sheet metal forming processes compensating springback error[J]. International Journal of Machine Tools & Manufacture, 1996, (36): 503-526.
[21]Karafillis A P, Boyce M C. Tooling and binder design for sheet metal forming processes compensating springback error[J]. International Journal of Machine Tools and Manufacture, 1996, (36): 503-526.
[22]Mackerle J. Creep and creep fracture/damage finite element modelling of engineering materials and structures[J]. International Journal of Pressure Vessels and Piping,2000, (77): 53-77.
[23]Mackerle J. Creep and creep fracture/damage finite element modelling of engineering materials and structures[J]. An addendum International Journal of Pressure Vessels and Piping, 2004, (81): 381-392.
[24]Sakuma T, Yagi K. Creep and fracture of engineering[A]. Materials and Structures Proceedings of the 8th International Conference on Creep and Fracture of Engineering Materials and Structures[C]. Japan, 1999.
[25]周亮,邓运来,晋坤,等.预处理对2124铝合金板材蠕变时效微结构与力学性能的影响[J].材料工程,2010,(2):81-85.Zhou L, Deng Y L, Jin K, et al. Effect of pre-treatment on microstructures and mechanical properties of 2124 A1 alloy creep aging sheet[J]. Journal of Materials Engneering,2010,(2): 81-85. 
[26]Zhan L, Lin J, Dean T A, et al.Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions[J]. International Journal of Mechanical Sciences, 2011, (53): 595-605.
[27]Kowalewski Z L, Lin J, Hayhurst  D R. Experimental and theoretical evaluation of a high-accuracy uni-axial creep testpiece with slit extensometer ridges[J]. International Journal of Mechanical Sciences, 1994, 36(8): 751-769.
[28]邓运来, 张劲, 张新明.连续矩形盒壁板的冲压成形试验与模拟研究[J].锻压技术,2010,35(5):32-37.Deng Y L, Zhang J, Zhang X M. FEM numerical and experimental investigations on stamping of a sheet with continuous rectangular boxes[J].Forging & Stamping Technology,2010,35(5):32-37.
[29]郑英,吴阳,张劲,等. 7475铝合金网格筋条壁板蠕变成形的试验和数值模拟[J].锻压技术,2012,37(5):42-46.Zheng Y, Wu Y, Zhang J, et al. Experimentation and numerical simulation of creep forming for 7475 aluminum alloy integrally stiffened panel[J]. Forging & Stamping Technology,2012,37(5):42-46.
[30]肖来荣,易丹青,蔡志刚,等.包渗法制备硅化物涂层的结构形貌及形成机理[J].中南大学学报:自然科学版,2008,39(1):48-53.Xiao L R, Yi D Q, Cai Z G, et al. Microstructure and formation mechanism of silicide coating prepared by pack cementation[J]. Journal of Central South University:Natural Science Edition Technology, 2008, 39(1): 48-53.
[31]熊创贤,万里,邓运来,等.Al-7.8Zn-1.6Mg-1.8Cu合金铸锭及其均匀化的微结构研究[J].中南大学学报:自然科学版,2010,41(2):465-471.Xiong C X, Wan L, Deng Y L, et al. Investigation of microstructures in as-cast and homogenized Al-7.8Zn-1.6Mg-1.8Cu aluminum alloy[J]. Journal of Central South University:Natural Science Edition, 2010, 41(2): 465-471.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9