网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
FGH96合金挤压过程非金属夹杂物的变形行为
英文标题:Deformation behavior of non-metallic inclusions of FGH96 alloy in extrusion process
作者:张敏聪 方爽 陈由红 孙兴 东赟鹏 王淑云 
单位:北京航空材料研究院 
关键词:FGH96合金 非金属夹杂物 热挤压  变形行为 
分类号:TG132.32
出版年,卷(期):页码:2013,38(6):132-137
摘要:

对热等静压态FGH96合金进行热挤压变形,分析非金属夹杂物Al2O3和SiO2在热等静压和热挤压过程中的形貌特征与变形特性。结果表明:在热等静压和热挤压过程中,Al2O3夹杂与FGH96合金基体为机械结合,两者之间没有反应过渡区,而SiO2夹杂与FGH96合金基体中的铝和钛元素在高温和高压下发生化学反应,在基体与SiO2夹杂之间形成反应过渡区;FGH96合金挤压变形过程中,材料内部为三向压应力状态,在挤压方向非金属夹杂物被拉长成不连续的线状,在垂直于挤压方向,夹杂物投影面积减小;大挤压比的热挤压变形能有效破碎合金中的非金属夹杂物缺陷,细化合金晶粒,提高FGH96合金盘件的纯净度水平。
 

The morphology and deformationcharac terisitics of non-metallic inclusions Al2O3 and SiO2 in the hot isostatic pressing process and the high-temperature extrusion process were analyzed by the hot extrusion deformation test of FGH96 alloy in the state of high-temperature isostatic pressing. The results show that Al2O3 has no reaction in FGH96 alloy and the transition zone between Al2O3 and FGH96 alloy is mechanical combination during the plastic deformation, whereas SiO2 reacts with aluminum and titanium in the environment of high temperature and high pressure. The reaction zone is formed in the interface between SiO2 and FGH96 alloy. In the extrusion process, the FGH96 alloy is situated in strong tri-axial pressure. The non-metallic inclusions are pulled into a discontinuous line in extrusion direction and areas of inclusions are constricted in the perpendicular of extrusion direction. In summary, the large extrusion ratio can break the non-metallic inclusions in FGH96 alloy effectively,refine the grain and improve the purity of FGH96 alloy plate.
 

基金项目:
作者简介:
参考文献:


[1]Infante V, Silva J M, Freitas M, et al. Failures analysis of compressor blades of aeroengines due to service[J]. Engineering Failure Analysis, 2009,16:1118-1125.
[2]李园春, 王淑云. 国内粉末高温合金涡轮盘件制造技术的发展现状[J]. 稀有金属, 2001, 25(3): 226-229.Li Y C, Wang S Y. Development on manufacture of turbine disk from superalloy powder in China[J]. Chinese Journal of Rare Metals, 2001, 25(3): 226-229.
[3]李惠曲, 王淑云, 东赟鹏, 等. 粉末高温合金等温锻造过程非金属夹杂物的变形特征[J]. 新技术新工艺, 2009, (5): 93-95.Li H Q, Wang S Y, Dong Y P, et al. Deformation character of non-metallic inclusions in powder superalloy during isothermal casting[J]. New Technology New Process, 2009, (5): 93-95.
[4]王旭青. FGH96高温合金粉末显微组织及夹杂分析[J]. 粉末冶金技术, 2001, 19(2): 1-4.Wang X Q. The analysis of microstructure and inclusion of FGH96-powder of 750℃ superalloy[J]. Powder Metallurgy Technology, 2001, 19(2): 1-4.
[5]Huron E S, Roth P G. The influences on low cycle fatigue life in a P/M nickel-base disk superalloy[A]. Proceedings of the Eight International Symposium on Superalloy
[C]. Warrendale: The Minerals, Metals & Materials Society, 1996.
[6]国为民, 吴剑涛, 张凤戈, 等. 粉末高温合金中夹杂物特性及与不同成型工艺的关系[J]. 材料导报, 2004, 18(11): 87-91.Guo W M, Wu J T, Zhang F G, et al. Characteristic of inclusions and its relationship with different forming processes in powder superalloy[J]. Materials Review, 2004, 18(11):87-91.
[7]邹金文, 汪武祥. 粉末高温合金中夹杂物特性及其质量控制[J]. 粉末冶金技术, 2001, 19(1): 87-91.Zou J W, Wang W X. Characteristic and quality control of inclusions in P/M superalloy[J]. Powder Metallurgy Technology, 2001, 19(1):87-91.
[8]Barrie R L, Gabb T P, Telesman J, et al. Effectiveness of shot peening in suppressing fatigue cracking at non-metallic inclusions in Udimet 720[J]. Materials Science and Engineering A, 2008, 474(1): 71-81.
[9]Gabb T P, Telesman J, Kantzos P T, et al. Initial assessment of the effects of nonmetallic inclusions on fatigue life of powder-metallurgy-processed Udimet 720[R]. NASA/TM-2002-211571, Washington: National Aeronautics and Space Administration, 2002.
[10]Shenoy M M, Kumar R S, Mcdowell D L. Modeling effects of non-metallic inclusions on LCF in DS nickel-base superalloys[J]. International Journal of Fatigue, 2005,27(2):113-127.
[11]Chang M, Koul A K, Cooper C. Damage tolerance of P/M turbine disc materials[A]. Proceedings of the Eight International Symposium on Superalloy
[C]. Warrendale: The Minerals, Metals & Materials Society, 1996.
[12]王淑云,张敏聪,东赟鹏, 等. FGH96合金热挤压棒材超塑性研究[J]. 材料工程, 2012,384(7):24-28.Wang S Y, Zhang M C, Dong Y P, et al. Study on superplasticity of extruded FGH96 Alloy[J]. Journal of Materials Engineering, 2012, 384(7):24-28.
[13]刘趁意,王淑云,李付国, 等. 粉末高温合金挤压变形组织及变形机理研究[J]. 锻压装备与制造技术, 2009, 44(1):84-87.Liu C Y, Wang S Y, Li F G, et al. The procedure and mechanics research of extrusion deformation for FGH96 alloy[J]. China Metalforming Equipment Manufacturing Technology, 2009, 44(1):84-87.
[14]Zhang M C, Liu C Y, Wang S Y. Deformation behaviors of non-metallic inclusion in FGH96 superalloy during different plastic processes[J]. Advanced Materials Research, 2012, 538-541:1187-1191.
[15]刘趁意,王淑云,东赟鹏, 等. FGH96合金挤压过程的数值模拟与试验研究[J]. 锻压装备与制造技术, 2010, 45(2):103-107.Liu C Y, Wang S Y, Dong Y P, et al. Numerical simulation and testing study on extrusion process of FGH96 alloy[J]. China Metalforming Equipment Manufacturing Technology, 2010, 45(2):103-107.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9