网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC4合金叶片终锻过程中微观组织的数值模拟
英文标题:Numerical simulation of microstructure in the finish forging process of TC4 alloy blade
作者:齐广霞 王晓良 史丽坤 
单位:沈阳理工大学 沈阳黎明航空发动机(集团)有限责任公司 
关键词:TC4钛合金 叶片 终锻 微观组织 数值模拟 
分类号:TG316.3
出版年,卷(期):页码:2014,39(12):156-161
摘要:

根据热模拟压缩和金相实验数据建立TC4钛合金的微观组织模型,并对有限元模拟软件Deform子程序功能进行扩展,使其能够预测微观组织演变。针对叶片的终锻过程进行数值模拟,分析叶片的动态再结晶体积分数和平均晶粒尺寸在不同变形温度、变形速度及摩擦因子下的分布规律。通过模拟结果分析得知,当变形温度逐渐升高时,叶片平均晶粒尺寸先增大后减小;当变形速度增大时,平均晶粒尺寸的分布呈先增大后减小的变化趋势,而动态再结晶体积分数逐渐增大;当摩擦因子逐渐变大时,平均晶粒尺寸的分布呈现先减小后增大的趋势,动态再结晶体积分数变化呈增大趋势,因此为了得到性能较好的锻件,摩擦因子选择较小为好。

The recrystallization model of TC4 titanium alloy was established based on the experimental data of the thermal simulation compress and metallography, and microstructure evolution could be forecasted by developing the function of simulation software Deform subroutine. The finish forging process of TC4 titanium alloy blade was simulated, and the distribution laws of volume fraction of dynamic recrystallization and the average grain size for the blade were analyzed under different deformation temperatures, deformation rates and friction coefficients. The simulation results show that the change trend of average grain size for blade decreases after increasing first with the rising deformation temperature. The distribution trend of average grain size for blade decreases after increasing first with the acceleration of the deformation speed, as well as volume fraction of dynamic recrystallization increases gradually. However, the distribution trend of average grain size for blade increases after decreasing first with the increase of friction coefficients gradually, as well as the change of volume fraction of dynamic recrystallization increases gradually. Thus,  the friction coefficients should be chosen as small as possible to get a better property of forgings.

基金项目:
作者简介:
齐广霞(1960-),女,硕士,教授;通讯作者:王晓良(1988-),女,硕士研究生
参考文献:

[1]赵树萍,吕双坤. 钛合金在航空航天领域中的应用[J]. 钛工业进展,2002,30(6):18-21.

Zhao S P,Lv S K. The application of titanium in the aerospace field[J]. Titanium Industry Progress,2002,30 (6):18-21.

[2]李文平.钛合金的应用现状及发展前景[J]. 轻金属,2002,(5):53-55.

Li W P. Development and application of titanium alloys[J]. Light Metals, 2002, (5):53-55.

[3]北京工业大学有色金属锻造编写组. 有色金属锻造[M]. 北京:国防工业出版社,1979.

Compiling group of Beijing University of Technology Nonferrous Metal Forging. Nonferrous Metal Forging[M]. Beijing: National Defence Industry Press,1979.

[4]粟枯. 叶片精锻[M]. 北京:国防工业出版社,1984.

Su K. Precision Forging of Blade[M]. Beijing: National Defence Industry Press,1984.

[5]詹梅,刘郁丽,杨合.航空叶片的精锻工艺与模拟技术[J].重型机械,1999,(6):1-3.

Zhan M, Liu Y L,Yang H. Precision forging technology and simulation technology for aeronautical blade[J]. Heavy Machinery, 1999,(6):1-3.

[6]Kopp R, Karnhausen K,De Souza M M.Numerical simulation method for designing thermomechanical treatment illustrated by bar rolling scand[J]. J. Metal,1991,20(7):351-363.

[7]赵根发,王忠堂,刘劲松,等. AZ80镁合金管材热挤压工艺及组织性能研究[J].沈阳理工大学学报,2010,12(6):56-57.

Zhao G F,Wang Z T,Liu J S,et al. Analysis of microstructures and mechanical mropertie of hot extruded AZ80 magnesium alloy[J]. Journal of Shenyang Ligong University of Technology,2010,12(6):56-57.

[8]曹娜. GH4169四级转子叶片精锻成形规律数值模拟[D].沈阳:沈阳理工大学,2012.

Cao N. The Law of Numerical Simulation of GH4169 Four Rotor Blade Precision Forging Forming [D]. Shenyang:Shenyang Ligong University,2012.

[9]党淼. TAll本构关系及叶片微观组织模拟研究[D]. 沈阳:沈阳理工大学,2010.

Dang M. TAll Constitutive Relation and Blade Microstructure Simulation Research[D]. Shengyang:Shenyang Ligong University,2010.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9