[1]Rossini N S, Dassisti M, Benyounis K Y, et al. Methods of measuring residual stresses in components[J]. Materials & Design, 2012, 35: 572-588.
[2]Trufyakov V, Mikheev P, Kudryavtsev Y, et al. Fatigue endurance of welded joints,residual stresses and fatigue improvement treatments[A].Ship Structure Symposium 93[C]. USA:Arlington, 1993.
[3]白明远, 刘丽玉, 吴俊峰, 等. 弹壳开裂失效分析[J]. 理化检验: 物理分册, 2011, 47(3): 180-183.
Bai M Y, Liu L Y, Wu J F, et al. Failure analysis on cracking of cartridge case[J]. Physical Testing and Chemical Analysis: Physical Testing, 2011, 47(3): 180-183.
[4]张彤, 张李超, 余俊, 等. 板料V形自由折弯成形数据库校正方法[J]. 锻压技术,2014,39(3):57-61.
Zhang T, Zhang L C, Yu J, et al. Correction method of database in V-shaped air-bending forming of metal sheet[J]. Forging & Stamping Technology, 2014,39(3):57-61.
[5]Tekner Z. An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies[J]. Journal of Materials Processing Technology, 2004, 145(1): 109-117.
[6]刘雨阳, 闵峻英, 辛立久, 等. 热冲压成形工艺参数对硼钢板帽形件回弹影响分析[J]. 锻压技术,2014,39(3):34-37.
Liu Y Y, Min J Y, Xin L J, et al. Effect of hot stamping process parameters on springback of hat-shaped boron steel parts[J]. Forging & Stamping Technology, 2014,39(3):34-37.
[7]熊雄, 姚斌, 欧阳醌, 等. 板料折弯成形虚拟仿真技术研究[J]. 锻压技术,2014,39(3):15-19.
Xiong X, Yao B, Ouyang K, et al. Study on virtual animation technology of sheet metal bending[J]. Forging & Stamping Technology, 2014,39(3):15-19.
[8]Livatyali H, Altan T. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations[J]. Journal of Materials Processing Technology, 2001, 117(1): 262-268.
[9]Grèze R, Manach P Y, Laurent H, et al. Influence of the temperature on residual stresses and springback effect in an aluminium alloy[J]. International Journal of Mechanical Sciences, 2010, 52(9): 1094-1100.
[10]Laurent H, Grèze R, Manach P Y, et al. Influence of constitutive model in springback prediction using the split-ring test[J]. International Journal of Mechanical Sciences, 2009, 51(3): 233-245.
[11]Colgan M, Monaghan J. Deep drawing process: analysis and experiment[J]. Journal of Materials Processing Technology, 2003,132(1):35-41.
[12]黄毓晖, 轩福贞, 涂善东. 304 奥氏体不锈钢在酸性氯离子溶液中应力腐蚀性能的研究[J]. 压力容器, 2009, 26(7): 5-10.
Huang Y H, Xuan F Z, Tu S D. Study on stress corrosion property of 304 austenitic stainless steelin the environment of acid chloride solution[J]. Pressure Vessels, 2009,26(7): 5-10.
[13]Hurley M F, Olson C R, Ward L J, et al. Transgranular stress corrosion cracking of 304L stainless steel pipe clamps in direct use geothermal water heating applications[J]. Engineering Failure Analysis, 2013, 33: 336-346.
[14]Osama M Alyousif, Rokuro Nishimura. On the stress corrosion cracking and hydrogen embrittlement of sensitized austenitic stainless steels in boiling saturated magnesium chloride solutions: Effect of applied stress[J]. Corrosion Science, 2008(50):2919–2926.
[15]申勇峰, 李晓旭, 薛文颖, 等. 304 不锈钢拉伸变形过程中的马氏体相变[J]. 东北大学学报:自然科学版, 2012, 33(8): 1125-1128.
Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation[J]. Journal of Northeastern University:Natural Science, 2012, 33(8):1125-1128.
[16]Hecker S S, Stout M G, Staudhammer K P, et al. Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behavior[J]. Metallurgical Transactions A, 1982, 13(4): 619-626.
[17]De A K, Speer J G, Matlock D K, et al. Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37(6): 1875-1886.
|