网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2.25Cr1Mo0.25V钢高温变形微观组织的演变分析与数值模拟
英文标题:Microstructural evolution and numerical simulation of 2.25Cr1Mo0.25Valloy steel during hot deformation
作者:黄西娜 边翊 刘刚 翟月雯 李凤娇 朱卫东 钟志平 
单位:北京机电研究所 中国第一重型机械集团公司 
关键词:2.25Cr1Mo0.25V钢 高温流变行为 动态再结晶 数学模型 
分类号:
出版年,卷(期):页码:2015,40(1):148-153
摘要:

在Gleeble-3500热模拟试验机上对2.25Cr1Mo0.25V钢进行等温压缩试验,得到变形温度在900~1200 ℃、应变速率在0.001~10 s-1、变形量为60%时的高温流动应力-应变曲线。结合金相实验,研究2.25Cr1Mo0.25V钢在不同变形条件下微观组织的演变规律,建立2.25Cr1Mo0.25V钢在高温塑性变形过程中的动态再结晶数学模型。将模型与有限元结合,对热压缩过程的组织演化进行数值模拟,模拟结果与试验结果的相对误差小于11%,验证了模型的正确性。

 Isothermal compressive experiments of 2.25Cr1Mo0.25V steel were carried out with hot-simulation machine of Gleeble -3500. High temperature flow stress-strain curves were gained over the range of deformation temperature from 900 to 1200 ℃, strain rate from 0.001 to 10 s-1 and 60% deformation degree. In addition, microstructural evolution of 2.25Cr1Mo0.25V steel under different deformation conditions was researched by both metallurgical tests and flow stress-strain curves and mathematical model of dynamic recrystallization of 2.25Cr1Mo0.25V steel was established during hot temperature plastic deformation. By combining the microstructure model with finite element method, the microstructural evolution was simulated during isothermal compressive deformation. The relative error is smaller than 11% by comparing the results of simulation and experiment. The correctness of model was tested.

基金项目:
国家科技重大专项(2011ZX04002-101-002)
作者简介:
黄西娜(1987-),女,硕士研究生
参考文献:


[1]梅丽华,魏刚. 2.25Cr-1Mo-0.25V 钢加氢反应器的研制[J]. 压力容器,2003,20(11):36-42.Mei L H,Wei G. Fabrication of hydrotreating reactor made of 2.25Cr-1Mo-0.25V steel[J]. Pressure Vessel, 2003,20(11):36-42.


[2]谢章龙,刘振宇,王国栋. 低碳9Ni钢的动态再结晶数学模型[J]. 东北大学学报:自然科学版,2010,31(1):51-54.Xie Z L, Liu Z Y, Wang G D. Mathematical modeling for dynamic recrystallization behavior of low-carbon 9Ni steels[J]. Journal of Northeastern University:Natural Science Edition, 2010,31(1):51-54.


[3]马晓辉. P91钢厚壁管垂直挤压工艺模拟研究[D]. 北京:机械科学研究总院,2011.Ma X H. Numerical Simulation on Vertical Extrusion Process for P91 Thick Wall Steel Tube[D]. Beijing:China Academy of Machinery Science & Technology,2011.


[4]Sellars C M.Computer modeling of structural evolution during hot working process[J]. Materials Science and Technology,1985,1(4):325~332.


[5]Roberts W. Microstructure evolution and flow stress during hot working[J]. Strength of Metals and Alloys[C].Oxford,1985.


[6]Karhausen K, Kopp R, De Souza M M.Numericalsimulation method for designing thermo mechanical treatments,illustrated by bar rolling[J]. Scandinavian Journal of Metallurgy,1991,20(6):351-363.


[7]Ashok Kumar. Modelling the microstructural evolution during hot compression of low carbon steel[J].Steel Research,1993,64(4):210-217 .


[8]Sellars C M. Modelling microstructural development during hot rolling[J]. Materials Science and Technology,1990, 6(9):1072-1081. 


[9]Toth L S, Jonas J J. Modelling the texture changes produced by dynamic recrystallization[J]. Scripta Metallurgica et Materialia,1992,27(3):359-363.


[10]Bowden J W,Jonas J J. Effect of interpass time on austenite grain refinement by means of dynamic recrystallization of austenite[J]. Metallurgical Transactions A,1991,22A(12):2947-2957.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9