网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
SiCp/Al复合材料圆柱体镦粗过程的有限元模拟
英文标题:Finite element simulation of upsetting process for composite cylinder SiCp/Al
作者:刘丹 周丽 王唱舟 
单位:沈阳理工大学 
关键词:SiCp/Al复合材料 镦粗 有限元模拟 鼓形区裂纹 
分类号:
出版年,卷(期):页码:2015,40(7):7-13
摘要:

运用有限元软件Abaqus对SiCp/Al复合材料进行三维热力耦合模拟,分析了各变形工艺参数对SiCp/Al复合材料圆柱体镦粗过程的损伤场、应变场和温度场的影响规律,强调了鼓形区裂纹的出现。利用Origin软件对不同摩擦系数下坯料的等效应变值和载荷行程值进行数据处理,并观察其变化规律。结果表明:变形量对坯料的损伤场、应变场和温度场有显著影响,当变形量为20%和30%时,锻件鼓形区不出现裂纹,变形量增加到40%时,鼓形区出现裂纹,而摩擦系数对温度场和损伤场的影响较小,随着摩擦系数的增大,中心等效应变值和载荷值也增大。

The composite cylinder SiCp/Al was investigated by 3D thermal-mechanical coupled simulation based on the finite element software Abaqus. The influences of the deformation parameters on damage field, strain field and temperature field during the upsetting process of composite cylinder SiCp/Al were analyzed, and the emergence of the drum-shaped area cracks was emphasized. The equivalent strain and load stroke of billet under different friction coefficients were carried out through data processing by Origin software, and their changing regularities were recorded. The results show that the amount of deformation has significant effect on the simulation results. When the deformation amount is 20% or 30%, the drum-shaped zone of forging has no cracks, and when the deformation amount increases to 40%, the drum-shaped zone cracks, but the friction coefficient has little effect on the temperature field and the damage field. With the increase of the friction coefficient, the center equivalent strain and load value increase too.
 

基金项目:
国家自然科学基金资助项目(51175353)
作者简介:
刘丹(1990-),女,硕士研究生
参考文献:

[1]贺毅强.颗粒增强金属基复合材料的研究进展[J].热加工工艺,2012,41(2):133-136.


He Y Q. Research progress of metal matrix composites[J]. Hot Working Technology, 2012,41(2): 133-136.


[2]李德溥,姚英学,袁哲俊.颗粒增强金属基复合材料加工技术进展[J].工具技术,2006,(10):3-9.


Li D P,Yao Y X,Yuan Z J.Particulate reinforced composite metal matrix processing technology progress[J].Tool Engineering,2006,(10):3-9.


[3]邹晋,邹爱华,张建云.颗粒增强金属基复合材料热残余应力研究进展[J].热处理技术与装备,2012,33(4):27-30.


Zou J, Zou A H, Zhang J Y. Thermal residual stresses progress particulate reinforced metal matrix composite [J].Heat Treatment Technology and Equipment,2012,33(4):27-30.


[4]葛英飞, 徐九华, 傅玉灿, 等. SiC_p/Al复合材料高速铣削加工表面质量及切屑形成机制[J].机械工程材料,2012,(2):15-18.


Ge Y F, Xu J H, Fu Y C, et al. SiC_p / Al composites speed milling surface quality and chip formation mechanism[J]. Materials for Mechanical Engineering,2012,(2):15-18.


[5]戈晓岚, 姜左, 许晓静, 等. SiCp/Cu复合材料切削加工性及其加工表面微观结构研究[J].中国机械工程,2006,17(9):965-968.


Ge X L, Jiang Z, Xu X J, et al. Structure of machinability SiCp / Cu composite material and surface micro-machining[J].China Mechanical Engineering,2006,17(9):965-968.


[6]鲍春平.颗粒增强铝基复合材料精密切削技术的研究[D].哈尔滨:哈尔滨工业大学,2007.


Bao C P. Research Particulate Reinforced Aluminum Matrix Composites Precision Cutting Technology[D].Harbin: Harbin Institute of Technology,2007.


[7]Puneet B L, Upadhyay E. Experimental investigations to study tool wear during turning of alumina reinforced aluminium composite[J]. Journal of Materials Processing Technology,2008,206(4):225-330.


[8]Mnana A,Bhattacharyya B.A study on machinability of Al/SiC-MMC[J].Journal of Materials Processing Technology,2003,140:711-716.


[9]李学通,王敏婷,张沛,等.大型饼类锻件镦粗过程形变力学演变研究[J].材料科学与工艺,2011,19(6):53-57.


Li X T,Wang M T,Zhang P, et al. Large cake forgings upsetting deformation mechanics Evolution[J].Materials Science & Technology,2011,19(6):53-57.


[10]Chun-Ho Liu, A-Cheng Wang. The coupled thermo-mechanical analysis in the upsetting process by the dynamic FEM[J].Journal of Materials Processing Technology,2008,201:37-42.


[11]李浩然.TC21钛合金大型铸锭开坯过程的数值模拟研究[D].沈阳:东北大学,2011.


Li H R. Numerical Simulation of Large TC21 Titanium Alloy Ingot Blooming Process[D].Shenyang:Northeastern University,2011.


[12]彭天成.AZ31镁合金锻造变形行为的研究及数值模拟[D].重庆:重庆大学,2009.


Peng T C. Research on Deformation Behavior of AZ31 Magnesium Alloy Forged and Numerical Simulation[D].Chongqing:Chongqing University,2009.


[13]余寿文,冯西桥.损伤力学 [M].北京:清华大学出版社,1997.


Yu S W, Feng X Q. Damage Mechanics [M].Beijing: Tsinghua University Press,1997.


[14]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part I. Yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol.,1977,99(1):2-15.


[15]Besson J, Devillers Guuerville L. Modeling of scatter and size effect in ductile fracture:application to thermal embrittlement of duplex stainless steels[J]. Engineering Fracture Mechanics,2000, 67(2): 169-190.


[16]陈志英,董湘怀.各向异性GTN损伤模型及其在板料成形中的应用[J].上海交通大学学报,2008,42(9):1414-1419.


Chen Z Y, Dong X H. Anisotropic GTN damage model and its application in sheet metal forming[J]. Journal of Shanghai Jiaotong University,2008,42(9):1414-1419.


[17]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar [J]. Acta Metallurgica, 1984, 32(1): 157.


[18]Jonas J J, Sellars C M.Strength and structure under hot working conditions[J].Metallurgical Reviews,1969,130(14):1-24.


[19]Shahani A R, Setayeshi S. Prediction of influence parameters on the hot rolling process using finite element method and neural network[J].Materials Processing Technology,2009,209:1920-1935.


[20]李学通,张沛,王敏婷,等.大型饼类锻件镦粗夹层裂纹缺陷形成机理研究[J].固体力学学报,2012,33(3):273-278.


Li X T,Zhang P,Wang M T,et al. Studies of large cake sandwich upsetting forging crack defect formation mechanism[J]. Chinese Journal of Solid Mechanics,2012,33(3):273-278.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9