[1]Hartl D J. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization[J]. Smart Materials & Structures, 2010, 19(1): 15-20.
[2]Hartl D J. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis[J]. Smart Materials & Structures, 2010, 19(1):15-21.
[3]赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002.
Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and Superelasticity of Alloy[M]. Beijing: National Defence Industry Press,2002.
[4]王心美,岳珠峰,王亚芳,等.NiTi合金的超弹性力学特性及其应用 [M].北京:科学出版社,2009.
Wang X M, Yue Z F, Wang Y F, et al. Superelastic Mechanical Property and Application of NiTi Alloy[M]. Beijing: Science Press, 2009.
[5]杜泓飞,NiTi合金在马氏体相变中局部变形行为的多场研究[D].北京:清华大学,2013.
Du H F. Multi-fields Investigation on Localized Deformation Behavior of Martensitic Transformation in NiTi Alloys[D]. Beijing: Tsinghua University, 2013.
[6]Kim K, Daly S. Martensite Strain memory in the shape memory alloy nickel-titanium under mechanical cycling[J]. Experimental Mechanics,2011, 51(4): 641-652.
[7]Otsuka K, Wayman C M. Shape Memory Materials[M]. London: Cambridge University Press, 1999.
[8]Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys[J]. Progress in Materials Science, 2005,50: 511-678.
[9]Ren Xiaobin, Otsuka K. Universal symmetry property of point defects in crystals[J]. Physical Review Letters, 2000, 85: 1016-1019.
[10]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1980.
Xu Y Z. Martensitic Transformation and Martensite[M]. Beijing: Science Press, 1980.
[11]Atli K C, Franco B E, Karaman I, et al. Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling[J]. Materials Science and Engineering A, 2013, 574: 9-16.
[12]Hamilton R F, Sehitoglu H, Chumlyakov Y, et al. Stress dependence of the hysteresis in single crystal NiTi alloys[J]. Acta Materialia, 2004,52: 3383-3402.
[13]Zhao J Q, Zeng P, Pan B, et al. Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation [J]. Optics and Lasers in Engineering, 2012, 50(11): 1662-1671.
[14]Hua, T , Xie H, Wang S . Evaluation of the quality of a speckle pattern in the digital image correlation method by mean subset fluctuation[J]. Optics & Laser Technology, 2011, 43(1): 9-13.
[15]Ahluwalia R, Lookman T, Saxena A, et al. Landau theory for shape memory polycrystals[J]. Acta Materialia, 2004,52: 209-218.
[16]Miyazaki S, Mizukoshi K, Ueki T, et al. Fatigue life of Ti-50 at.% Ni and Ti-40Ni-10Cu (at.%) shape memory alloy wires[J]. Materials Science and Engineering A, 1999, 273: 658-663.
[17]Liu Y, Favier D. Stabilisation of martensite due to shear deformation via variant reorientation in polycrystalline NiTi[J]. Acta Materialia, 2000, 48: 3489-3499.
[18]Olbricht J, Yawny A, Pelegrina J L, et al. On the Stress-Induced Formation of R-Phase in Ultra-Fine-Grained Ni-Rich NiTi Shape Memory Alloys[J]. Metallurgical and Materials Transactions A, 2011,42: 2556-2574.
|