网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
铝板带热连轧过程纠偏预测函数控制建模及数值模拟
英文标题:Modeling and numerical simulation of predictive functional control for correcting in hot aluminum strip continuous rolling
作者:石树正 马立勇 付卓 张伟 霍珍珍 倪笑宇 
单位:河北建筑工程学院 长沙学院 
关键词:铝板带 热连轧 纠偏 预测函数控制 
分类号:TG339
出版年,卷(期):页码:2015,40(8):24-29
摘要:
根据铝板带热连轧过程中板带的跑偏运动特点,建立了热连轧铝板带跑偏过程数学模型,分别求得了以辊缝差、来料厚差等跑偏诱因为输入,以轧制力差、跑偏量为输出的跑偏传递函数。建立了多冲量串级纠偏控制系统,并运用预测函数控制作为纠偏系统的控制算法。将纠偏预测函数控制系统运用到热连轧最容易发生跑偏的F4机架中进行纠偏控制数值模拟,并将纠偏控制效果与传统PID控制纠偏效果模拟进行对比。数值模拟结果显示:运用预测函数控制的纠偏控制系统,调整时间为0.5 s,轧制力差超调量小于10 kN,跑偏量超调量小于1 mm;其鲁棒性明显比PID强,调整时间短,超调量小,能够满足高速轧制下的纠偏控制。对纠偏预测函数控制算法进行了实验验证。实验结果显示,纠偏系统在以现场数据为输入和扰动时,能够快速、稳定、准确地减小各机架的轧制力差,防止出现轧制过程中出现大幅的跑偏现象。
For the characteristics of aluminum strip deviation in hot aluminum strip continuous rolling, a deviation mathematical model of hot aluminum strip continuous rolling was set up. The multi-impulse cascade control system was found with deviation factors of roll gap difference and thickness difference as inputs, rolling force difference and quantity of deviation as transfer function, and predictive functional control as control algorithm. A simulation of correcting functional control system was conducted, and it is used in F4 frame, which is the easiest to deviate in the hot aluminum strip continuous rolling. The control results were compared with the traditional PID control. The simulation results show that when the correcting control system is used in the predictive control system, the adjusting time is 0.5 s, the overshoot of rolling force difference is less than 10 kN, and the overshoot of deviation is less than 1 mm. Its robustness is stronger than that of PID in the short adjusting time, small overshoot, and meets correcting control requirements in high speed rolling. The control algorithm of correcting predictive function was verified by experiment. The experimental results show that when the correct system is regarded as field data to input and disturb, the rolling force difference of any frames quickly can be reduced stably and accurately in case deviation phenomenon during rolling. 
基金项目:
国家自然科学基金资助项目(51374241);河北省高等学校科学技术研究项目(Z2014125);河北建筑工程学院青年基金资助项目(QN201402);河北建筑工程学院青年基金资助项目(Q-201308)
作者简介:
石树正(1984-),男,硕士,讲师
参考文献:


[1]Montague R J, Watton J, Brown K J. A machine vision measurement of slab camber in hot strip rolling [J]. Journal of Materials Processing Technology, 2005, 168(1):172-180.
[2]日本钢铁协会编.板带轧制理论与实践[M]. 王国栋,译.北京: 中国铁道出版社, 1990.Iron and Steel Institute Japan. Practice and Theory of Strip Rolling [M]. Translated by Wang G D. Beijing: Railway Publishing House, 1990.
[3]马立勇,刘义伦,付卓. 热轧铝板带平衡调控建模及数值模拟[J] . 锻压技术, 2014,39 (11): 130-134.Ma L Y, Liu Y L, Fu Z. Balance straightening modeling and numerical simulation on lateral non-symmetrical phenomenon in hot rolling of Al-alloys [J]. Research on Iron & Steel, 2014,39 (11): 130-134.
[4]赵先琼,刘义伦,付卓,等. 非对称扰动下热轧铝板带跑偏过程三维数值模拟[J]. 湖南大学学报:自然科学版, 2011, 38(7):37-42.Zhao X Q, Liu Y L, Fu Z, et al. Numerical simulation of the asymmetric unstable situation in hot continuous rolling of aluminium alloy [J]. Journal of Hunan University:Natural Science, 2011,38(7): 37-42.
[5]刘义伦,凌于蓝,付卓. 铝热连轧尾部跑偏控制模型及其仿真[J]. 工程设计学报, 2013,(20): 226-229,235.Liu Y L, Ling Y L, Fu Z. The tail deviation of the aluminum strip hot rolling control model and its simulation. [J]. Chinese Journal of Engineering Design, 2013,(20): 226-229,235.
[6]Biggs D L, Hardy S J, Brown K J.Influence of process variables on development of camber during hot rolling of strip steel[J].Iron Making and Steel Making, 2000, 27(1): 55-62.
[7]Yang L P,Peng Y,Liu H M.Two-dimensional transient temperature field of finish rolling section in hot tandem rolling[J].Journal of Iron and Steel Research International, 2004, 11(4): 29-33.
[8]Abdelghani-Idrissi M A, Arbaoui M A, Estel L, et al. Predictive functional control of a counter current heat exchanger using convexity property[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(5):449-457.
[9]Xin-fang Z, Da-ping X, Yi-bing L. Predictive functional control of a doubly fed induction generator for variable speed wind turbines [A]. Fifth World Congress on Intelligent Control and Automation [C].Hangzhou, 2004.
[10]Vivas A, Poignet P. Predictive functional control of a parallel robot[J]. Control Engineering Practice, 2005,13(7):863-874.
[11]Ryoichi Takahashi. State of the art in hot rolling process control [J]. Control Engineering Practice, 2001,(9): 987-993.
[12]Bouhenchir H, Cabassud M, Le Lann M. Predictive functional control for the temperature control of a chemical batch reactor [J]. Computers & Chemical Engineering, 2006, 30(6):1141-1154.
[13]何纯玉. 中厚板轧制过程高精度侧弯控制的研究与应用[D]. 沈阳:东北大学,2009.He C Y. High Precision Camber Control and Application in Medium Thick Strip Rolling [D]. Shenyang:Northeastern University,2009.
[14]Bonchis A,Corke  P I, Rye D C, et al. Variable structure methods in hydraulic servo systems control[J]. Automatica, 2001, 37: 585-595.
[15]王春行. 液压伺服控制系统[M]. 北京:冶金工业出版社,1980.Wang C H. Hydraulic Servo Control System [M]. Beijing: Metallurgical Industry Press, 1980. 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9