网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Dynaform的22MnB5高强度钢热冲压仿真
英文标题:Simulation on hot stamping of high strength steel 22MnB5 based on Dynaform
作者:张立强 刘婷 郑文慧 胡豪 仲志刚 
单位:中南林业科技大学 湖南师范大学 湖南晓光汽车模具有限公司 
关键词:热冲压仿真 高强度钢 边界条件 减薄率 
分类号:TG306
出版年,卷(期):页码:2015,40(8):34-40
摘要:
有限元分析是热冲压成形过程中节约成本的必要手段,然而,计算机数值仿真的精确性对于材料模型和边界条件有着很强的依赖关系。以高强钢22MnB5为研究对象,通过热模拟实验和成形过程中工件与模具之间的热分析来准确获得材料模型和热边界条件,从而提高热冲压成形过程数值仿真精度,为热冲压成形零件质量控制提供参考。仿真结果表明,热冲压变形过程中板料减薄率变化分布不均匀,板料减薄率最大值出现在侧壁靠近法兰圆角处,而法兰与底部减薄率则较小,仿真结果与实验结果基本吻合,验证了热冲压仿真的正确性与可靠性。
The finite element analysis is an essential step for the sake of cost saving when designing hot stamping processes. The quality of the numerical simulation results is strongly dependent on the accuracy of material model and boundary conditions used in FE models. For the high strength steel 22MnB5, the material model and thermal boundary conditions were obtained from thermal simulation experiments and thermal analysis between the part and the die during hot stamping, and after that the accuracy of numerical simulation was improved. Therefore, these provide references for the quality control of hot stamping parts. The numerical simulation results show that the thickness reduction rates of sheet metal are in uneven distribution during hot stamping. The maximum thickness reduction rate occurs on the sidewall of the part nearby the flange billet. However, the thickness reduction rates are smaller in the flange and the bottom. The simulation result is in good agreement with the experimental result. Furthermore, the validity and reliability of the hot stamping simulation are verified.
基金项目:
湖南省教育厅资助科研项目(13B145);湖南省大学生研究性学习和创新性实验计划项目;湖南省高校科技创新团队支持计划资助
作者简介:
张立强(1978-),男,博士,副教授
参考文献:


[1]于宏元. 车用高强度钢板热冲压工艺改进研究及应用[D]. 大连: 大连理工大学, 2013.Yu H Y. Research on Hot Forming Process Improvement of Automobile High Strength Steel and its Application [D].Dalian: Dalian University of Technology, 2013.
[2]蒋峥嵘. 高强度钢板热冲压工艺研究及有限元分析[D]. 重庆: 重庆大学, 2011.Jang Z R. Hot Stamping Process Research and FEA of High Strength Steel [D]. Chongqing: Chongqing University,2011.
[3]Bariani P F, Bruschi S, Ghiotti A. Advances in predicting damage evolution and fracture occurrence in metal forming operations [J]. International Journal of Advanced Manufacturing Technology, 2012, 14: 495-500.
[4]郭怡晖, 马鸣图, 张宜生, 等. 汽车前防撞梁的热冲压成形数值模拟与试验[J]. 锻压技术, 2013, 38(3): 46-50.Guo Y H, Ma M T, Zhang Y S, et al. Numerical simulation and experiment of hot stamping for front bumper of automobile [J]. Forming & Stamping Technology, 2013, 38(3): 46-50.
[5]Shi Z M, Liu K, Wang M Q, et al. Effect of non-isothermal deformation of austenite on phase transformation and microstructure of 22SiMn2TiB steel[J]. Materials Science & Engineering A, 2012, 536: 290-296.
[6]彭建, 韩韡, 彭毅, 等. 基于热扭转试验的ME21镁合金热变形行为研究[J]. 稀有金属, 2014, 38(3): 341-347.Peng J, Han W, Peng Y, et al. Hot deformation behavior of ME21 magnesium alloy by hot torsion test[J]. Chinese Journal of Rare Metals, 2014, 38(3): 341-347.
[7]Boher C, Roux S L, Penazzi L, et al. Experimental investigation of the tribological behavior and wear mechanisms of tool steel grades in hot stamping of a high-strength boron steel[J]. Wear, 2012, 294-295: 286-295.
[8]Min J Y, Lin J P, Min Y A, et al. On the ferrite and binate transformation in isothermally deformed 22MnB5 steels[J]. Materials Science & Engineering A, 2012, 550: 375-387.
[9]李增德, 林晨光, 崔舜. V-5Cr-5Ti合金的热变形行为及加工图[J]. 稀有金属, 2015, 39(3): 207-213.Li Z D, Lin C G, Cui X. Hot deformation behavior and processing map of V-5Cr-5Ti alloy[J]. Chinese Journal of Rare Metals, 2015, 39(3): 207-213.
[10]谭海林, 张宜声, 桂中祥, 等. 奥迪B柱热冲压成形热-力-相变耦合仿真分析[J]. 热加工工艺, 2013, 42(1): 67-69.Tan H L, Zhang Y S, Gui Z X, et al. Simulation analysis on thermo-mechanical metallurgical coupling of hot stamping audi B-pillar punching forming [J]. Hot Working Technology, 2013, 42(1): 67-69.
[11]刘文, 王梦寒, 冉云兰, 等. 超高强度钢热成形冷却过程数值模拟[J]. 热加工工艺, 2012, 41(3): 78-80.Liu W, Wang M H, Ran Y L, et al. Numerical simulation of cooling process for hot forming ultrahigh strength steel[J]. Hot Working Technology, 2012, 41(3): 78-80.
[12]段园培, 黄仲佳, 余小鲁, 等. 基于摩擦修正的TB6合金流变应力行为研究及本构模型建立[J]. 稀有金属, 2014, 38(2): 202-209.Duan Y P, Huang Z J, Yu X L, et al. Flow stress behavior and constitutive model of as-cast TB6 titanium alloy based on friction correction[J]. Chinese Journal of Rare Metals, 2014, 38(2): 202-209.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9