网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于BP神经网络矩形盒件拉深成形变压边力的预测
英文标题:Prediction of variable blank-holder force of rectangular box in deep drawing forming based on BP neural network
作者:李奇涵 王红强 刘海静 李笑梅 侯建文 朱培 
单位:长春工业大学 
关键词:人工神经网络 矩形盒件 变压边力 拉深成形 预测 
分类号:TH16
出版年,卷(期):页码:2015,40(11):27-31
摘要:
针对板料拉伸过程中出现拉裂、起皱等缺陷,通过人工神经网络技术研究了变压边力对矩形盒件拉伸成形效果的影响。建立了有限元模型,利用仿真软件Dynaform及“固定间隙法”获取样本数据;通过建立网络模型并对其学习训练,利用训练好的网络模型展开了对板料拉伸成形过程中变压边力预测技术的研究,获取了理想的压边力控制曲线。预测结果是板料的最大减薄率为16.2%,最大增厚率为6.6%,精度符合要求。仿真结果表明,BP神经网络可以实现对板料拉深成形变压边力的预测。
For the defects of cracking and wrinkling in the process of sheet metal stretching, the influence of variable blank-holder force in the drawing forming of rectangular box was studied by means of artificial neural network technology. The finite element model was established, and the sample data was obtained by simulation software Dynaform and “fixed gap method”. Through the establishment of network model and its learning and training, the prediction technology of the variable blank-holder force in the process of sheet metal stretch forming was researched by the trained network model, and the ideal curve of controlling blank-holder force was obtained. The prediction results are the largest thinning rate 16.2% and the largest thickness rate 6.6% of the sheet metal. The accuracy requirement is met. The simulation results show that the BP neural network can realize prediction of variable blank-holder force during the deep drawing.
基金项目:
吉林省省级经济结构战略调整引导资金专项项目(20141131)
作者简介:
李奇涵(1970-),男,博士,教授
参考文献:


[1]龚红英,朱伟,张质良,等.变压边力控制与矩形件拉深成形特性的相关性研究[J].塑性工程学报,2005,12(6):49-55. Gong H Y, Zhu W, Zhang Z L, et al. Study on the correlation between variable blank-holder force control and the formability of rectangular box drawing [J].Journal of Plasticity Engineering, 2005, 12 (6):49-55.
[2]张晓斌,孙宇,代珊.基于径向基神经网络杯形件拉伸成形变压边力预测技术研究[J].机械设计,2007,24(8):36-38.Zhang X B, Sun Y, Dai S. Research of prediction technology of blank-holder force of cup piece of tensile deformation based on RBF neural network [J]. Journal of Mechanical Design, 2007, 24(8):36-38.
[3]王晖,卫瑞元,袁军涛.基于变压边力的盒形件拉伸研究[J].机械设计与制造,2010, (7):95-96.Wang H, Wei R Y, Yuan J T. The researcher of box-drawing based on variable blank-holder force[J].Machinery Design & Manufacture,2010,(7):95-96.
[4]陈渝,胡志力,严勇.矩形盒件拉伸成形规律及失效分析[J].锻压技术,2015,40(8):52-58.Chen Y, Hu Z L, Yan Y. Rectangular box drawing forming law and failure analysis [J]. Forging & Stamping Technology, 2015, 40 (8): 52-58.
[5]Zhu W, Dong X H, Zhang Z L. Fuzzily control blank holder force in the process of blank deep drawing [A].2005 International Conference on Mechanical Engineering and Mechanics [C]. Nanjing, 2005.
[6]王旭,王宏.人工神经元网络原理与应用[M].北京:电子工业出版社,2005.Wang X, Wang H. Artificial Neural Network Theory and Application [M]. Beijing: Publishing House of Electronics Industry, 2005.
[7]罗云.基于仿真的拼焊板方盒件冲压成形因素研究及变压边力预测[D].南京:南京理工大学,2008.Luo Y. Research and Variable Blank-Holder Force Prediction Based on Stamping Factors of the Simulation of Welding Plate Box Parts [D]. Nanjing: Nanjing University of Science and Technology, 2008.
[8]丁华, 薛松,张东,等.基于拉伸试验的板料成形性能的研究[J].锻压技术,2013,38(2):37-39.Ding H, Xue S, Zhang D, et al. Research of sheet metal forming properties based on the tensile test [J]. Forging & Stamping Technology, 2013, 38(2): 37-39.
[9]Gorji A, Bakhshi M, Nourouzi S. An experimental/numerical study on the effect of forming parameters in sheet hydrodynamic deep drawing [J].International Journal of Advanced Design and Manufacturing Technology, 2013,6(1):87-99.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9