网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
316L不锈钢压缩热变形行为及临界损伤值研究
英文标题:Study on compressed thermal deformation behavior and critical damage value of stainless steel 316L
作者:刘光辉 刘华 王伟钦 张义帅  
单位:郑州机械研究所 
关键词:316L不锈钢 Deform-3D 压缩热变形 临界损伤值 
分类号:TG314.3
出版年,卷(期):页码:2016,41(2):118-123
摘要:
Deform-3D材料库中材料的力学性能与实际生产差别较大,直接利用其性能参数进行模拟,误差较大。利用实验数据进行模拟,可以使模拟结果更加准确和接近生产。采用Gleeble-1500D热模拟实验机对316L不锈钢进行高温压缩实验,分析了温度和应变速率对316L不锈钢高温力学性能的影响。并分别利用材料库中316L不锈钢力学性能数据和实验数据进行了压缩热变形模拟,分析了两种情况下的行程-载荷曲线和应力分布云图,并根据实验数据的模拟结果分析了316L不锈钢的临界损伤值。结果表明:应变速率一定时,热变形抗力随变形温度升高而降低;变形温度一定时,热变形抗力随应变速率增加而增大。应变速率为0.25 s-1时,316L不锈钢的临界损伤值在0.1604~0.2369之间。
The mecheanical properties of materials in Deform-3D material library are quite different from that in actual production. A big error will occur when the mechanical properties were applied directly to the simulation. According to the experimental data, simulation was realized, the results would be more accurate and closer to production. For stainless steel 316L, the compress test at high temperature was carried out by Gleeble-1500D simulation testing machine. The influences of temperature and strain rate on the mechanical properties of stainless steel 316L at high temperature were analyzed. The thermal compression process of stainless steel 316L was simulated by the mechanical properties data in material library and the experimental data respectively. Under the two cases, the stroke-load curves and stress distributions were analyzed, and the critical damage values of stainless steel 316L were analyzed according to the experimental data. The results show that the thermal deformation resistance decreases with the increase of deformation temperature at a constant of strain rate, and the deformation resistance increases with the increase of strain rate at a constant of deformation temperature. Furthermore, the critical damage value of stainless steel 316L with strain rate of 0.25 s-1 is within the range of 0.1604-0.2369.
基金项目:
科技部科研院所技术开发研究专项资助项目“汽车转向螺母多向联动精确成形及设备”(2013EG119106)
作者简介:
刘光辉(1989-),男,硕士研究生 刘华(1962-),男,博士,博士生导师,研究员
参考文献:

[1]黑志刚.316LN不锈钢高温塑性与裂纹预测的研究[D]. 太原:太原科技大学,2011.Hei Z G. Study on High Temperature Plasticity and Crack Prediction of 316LN Stainless Steel[D]. Taiyuan: Taiyuan University of Science and Technology,2011.


[2]韩鹏程,田荣,沈寅忠,等.316L奥氏体不锈钢高温拉伸时的动态应变时效[J].材料热处理技术,2012,41(16):1-5.Han P C, Tian R, Shen Y Z, et al. Dynamic strain aging in 316L austenitic stainless steel during tensile test at high temperature[J]. Material & Heat Treatment,2012,41(16):1-5.


[3]唐洋洋,袁守谦,卫琛浩,等.热处理对不同含氮量316L不锈钢组织及力学性能的影响[J].热加工工艺,2014,43(12):211-216.Tang Y Y, Yuan S Q, Wei C H, et al. Effect of heat treatment on microstructure and mechanical properties of different nitrogen levels in 316L stainless steel[J]. Hot Working Technology,2014,43(12):211-216.

[4]Huang X D, Zhang H, Yi H, et al. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature[J]. Materials Science and Engineering A, 2010, 527:485-490.

[5]裴文娇,郭训忠,王文涛,等.316L奥氏体不锈钢的高温流变行为[J].塑性工程学报,2014,21(3):104-110.Pei W J, Guo X Z, Wang W T, et al. Flow behaviors of 316L stainless steel at high temperature[J]. Journal of Plasticity Engineering,2014,21(3):104-110.

[6]宋仁伯,项建英,刘良元,等. 316L 不锈钢的热变形抗力模型[J].机械工程材料,2010,34(6):85-89.Song R B, Xiang J Y, Liu L Y, et al. Hot deformation resistance model of 316L stainless steel[J]. Materials for Mechanical Engineering,2010,34(6):85-89.

[7]石玉萍.1Cr13马氏体不锈钢热加工基础研究及锻造工艺模拟[D].太原:太原科技大学,2013.Shi Y P. Study on Basic Thermal Process of 1Cr13 Martensitic Stainless Steel and Forging Process Simulation[D]. Taiyuan: Taiyuan University of Science and Technology,2013.

[8]薛勇,张治民,吴耀金,等.AZ80镁合金热变形临界损伤因子与动态再结晶软化唯象本构研究[J]. 稀有金属材料与工程,2012,41(2):250-253.Xue Y, Zhang Z M, Wu Y J, et al. Study on the critical damage factor and dynamic recrystallization softening of AZ80 magnesium alloy[J].Rare Metal Materials and Engineering, 2012,41(2):250-253.

[9]林有智,傅高升,曹睿,等. γ-TiAl基合金压缩损伤与断裂行为的研究[J].稀有金属,2014,38(2):335-340.Lin Y Z, Fu G S, Cao R, et al. Compression damage and fracture behaviors of γ-TiAl based alloys[J]. Chinese Journal of Rare Metals, 2014,38(2):335-340.

[10]项建英,宋仁伯,任培东. 316L不锈钢动态再结晶行为[J].北京科技大学学报,2009,31(12):1555-1559.Xiang J Y, Song R B, Ren P D. Dynamic recrystallization behavior of 316L stainless steel[J]. Journal of Beijing University of Science and Technology,2009,31(12):1555-1559.

[11]甘国强,李萍,薛克敏,等.TA15钛合金热变形过程中基于介观尺度的相变模拟研究[J].稀有金属,2015,39(1):91-96.Gan G Q,Li P, Xue K M, et al. Mesoscopic simulation of phase transformation in TA15 alloy based on isothermal hot compression[J].Chinese Journal of Rare Metals, 2015,39(1):91-96.

[12]李福林,付锐,冯涤,等. 镍基变形高温合金CDS &W FGH96热变形行为研究[J]. 稀有金属,2015,39(3):201-206.Li F L, Fu R, Feng D, et al. Hot deformation characteristics of Ni-base wrought super alloy CDS &W FGH96[J]. Chinese Journal of Rare Metals, 2015,39(3): 201-206.

[13]姚彭彭,李萍,李成铭,等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属,2015,39(11):968-974.Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field[J]. Chinese Journal of Rare Metals, 2015,39(11): 968-974.

[14]Sowerby R,Chandtasekaran N. The prediction of damage accumulation when upsetting AISI 1045 steel specimens,based on McClintocks model[J].Materials Science and Engineering,1986,79(1):27-35.

[15]权国政,佟莹,周杰.不同温度及应变速率下AZ80镁合金临界临界损伤因子研究[J].功能材料,2010,41(5):892-894.Quan G Z, Tong Y, Zhou J. Study on critical damage factor of AZ80 magnesium alloy at different temperatures and strain rates[J]. Journal of Functional Materials,2010,41(5):892-894.

[16]权国政,李贵胜,王阳,等.温度及应变速率对Ti-6Al-2Zr-1Mo-1V合金临界损伤因子的影响[J].材料热处理学报,2013,34(1):175-181.Quan G Z, Li G S, Wang Y, et al. Effect of different temperatures and strain rates on critical damage factor of Ti-6Al-2Zr-1Mo-1V alloy[J].Transactions of Materials and Heat Treatment,2013,34(1):175-181.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9