网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
冷轧铜铝复合板结合界面残余应力分析
英文标题:Residual stress analysis on bonding interface for cold-rolled copper/aluminum composite plate
作者:张将 朱琳 高翔宇 陈生禄 
单位:太原科技大学 
关键词:变形特征 冷轧 铜铝复合板 残余应力 
分类号:TG335
出版年,卷(期):页码:2016,41(2):30-34
摘要:
针对冷轧铜铝双层板金属的变形特征以及各轧制工艺下界面残余应力的分布情况,采用有限元计算方法,分别将轧制速度、异径同步、异径异步各工艺产生的界面残余应力进行分析。研究结果表明,冷轧铜铝双层板的复合变形过程可分为4部分;铜板复合面的应变直接影响复合效果;异径同步轧制铜铝复合板时,随着辊径比的增大,铜板复合面的总变形量增大,当辊径比大于1.6时,总变形的增量不明显,辊径比取1.4~1.6时,残余应力较小;异径异步轧制铜铝复合板时,随着辊径比的增大,铜板复合面的总变形量增大,轧制速比取1.2~1.4时,残余应力较小。

For the deformation characteristics of the cold-rolled copper/aluminum composite plate and distribution of the residual stresses of bonding interface under the different rolling processes, the residual stresses of bonding interface brought by the rolling speed, synchronous rolling of non-equal sized rolls and asymmetrical rolling of non-equal sized rolls were analyzed by FEM. Studies show that the deformation process of copper/aluminum composite plate is made up of four parts. The strain of copper plate on the bonding surface directly affects the compound effect. In the process of synchronous rolling with non-equal sized rolls, the total deformation of copper composite plate increases with the increase of the roller diameter ratio. When the roller diameter ratio is greater than 1.6, the increment of the total deformation is not obvious, and when diameter ratio of the rolls is 1.4-1.6, the residual stress is low. In the process of asymmetrical rolling with non-equal sized rolls, the total deformation of copper composite surface increases with the increase of the roller diameter, and when the circumferential velocity ratio of rolling is 1.2-1.4, the residual stresses is low.

基金项目:
国家重点基础研究发展计划项目(2012CB722801)
作者简介:
张将(1989-),男,硕士研究生 朱琳(1971-),女,博士,讲师
参考文献:

[1]Kwang S L, Yongo-nam K. Solid-state bonding between Al and Cu by vacuum hot pressing [J].Transactions of Nonferrous Metals Society of China, 2013, 23(3): 341-346.


[2]In-kyu K, Sun I H. Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates[J].Materials and Design,2013, 47(6):590-598.

[3]Vahid Y M, Mohammad R T, Ahmad R. The effects of oxide film and annealing treatment on the bond strength of Al-Cu strips in cold roll bonding process[J].Materials and Design, 2014, 53(2): 174-181. 

[4]In-kyu K, Sun I H. Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior behavior[J].Materials and Design, 2014, 57(4): 625-631. 

[5]董勇军,王建伟,黄纯德,等. 铜包铝复合材料的热力学计算稳态分析[J].稀有金属,2014,38(6):1060-1065.Dong Y J, Wang J W, Huang C D, et al. Thermodynamic equilibrium calculation of copper clad aluminum composite[J]. Chinese Journal of Rare Metals,2014, 38(6):1060-1065.

[6]Robert U. The effect of rolling direction on the creep process of Al-Cu bimetallic sheet[J]. Materials and Design, 2013, 49(3): 693-700.

[7]Nagaraj V G, Jan G F, Bjorn H. Layer continuity in accumulative roll bonding of dissimilar material combinations [J].Materials and Design, 2013,52(2): 905-905.

[8]Mohammad R T, Roohollah J, Jan D, et al. Investigation of nanostructured aluminum/copper composite produced by accumulative roll bonding and folding process[J].Materials and Design, 2013,51(3): 274-279.

[9]Yu H L, Tieu A K, Cheng L, et al. An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques[J].The Minerals, Metals & Materials Society and ASM International,2014,45(9):4038-4045.

[10]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析与应用[M].北京:清华大学出版社,2008.Zhuang Z, You X C, Liao J H. Based on ABAQUS Finite Element Analysis and Application [M]. Beijing: Tsinghua University Press, 2008.

[11]俞汉清, 陈金德.金属塑性成形原理[M].北京:机械工业出版社,2010. Yu H Q, Chen J D. Fundamental of Metal Plastic Forming [M]. Beijing: China Machine Press,2010.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9