网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
板材充液热成形工艺成形极限预测研究
英文标题:Prediction on forming limit in hot/warm sheet hydroforming process
作者:蔡高参1 2 周晓军2 陆建江1 郎利辉3 刘康宁3 
单位:1.杰牌控股集团有限公司 2.浙江大学 3.北京航空航天大学 
关键词:板材充液热成形 成形极限 压力率 预测模型 
分类号:
出版年,卷(期):页码:2016,41(4):36-41
摘要:

为了对充液热成形工艺下的金属板材成形极限进行预测研究,采用长轴直径为Φ100 mm,短轴直径分别为Φ100,Φ90,Φ80,Φ60和Φ40 mm的椭圆形胀形模具,在4个不同温度梯度为300 ℃,210 ℃,150 ℃和RT(常温),两个不同压力率0.0045和0.045 MPa·s-1条件下进行铝合金板材热态胀形试验。利用相关极限应变计算公式,对试验数据进行计算和整理,标绘出了试验材料拉-拉变形区的成形极限曲线。结合二次多项式曲线拟合方法,计算出了拟合函数中的材料常数,建立了可用于预测金属材料成形极限、标绘材料成形极限曲线(拉-拉变形区)、指导金属板材热态胀形试验的板材成形极限预测模型方程。

In order to predict the forming limit in warm/hot sheet hydroforming, the warm/hot sheet hydrobulging test of aluminum alloy sheets were carried out by elliptic bulging die with the long shaft diameter Φ100 mm, short axis diameters Φ100,Φ90,Φ80,Φ60和Φ40 mm respectively under the conditions of four different temperatures at 300, 210, 150 ℃, RT (room temperature) and two different pressure rates at 0.0045, 0.045 MPa·s-1. The experimental data were calculated and collated, and the forming limit curves (FLCS) in tensile-tensile stress deformation zone were obtained by the correlation formula of ultimate strain. Combined with the quadratic polynomial curve fitting method, material constants of fitting function were calculated, and a prediction model equation was established to predict metal forming limits, plot forming limit curves (in tensile-tensile stress deformation zone), and give a guidance to warm/hot sheet metal hydrobulging test.

基金项目:
国家重大基础研究项目(613152-06)
作者简介:
蔡高参(1985-),男,博士,工程师
参考文献:

[1]Lihui Lang, Gaoshen Cai, Kangning Liu,et al. Investigation on the effect of through thickness normal stress on forming limit at elevated temperature by using modified M-K model[J]. International journal of Material Forming, 2015, 8(2): 211-228.

[2]Liu B, Lang L, Zeng Y, et al. Forming characteristic of sheet hydroforming under the influence of through-thickness normal stress[J]. Journal of Materials Processing Technology, 2012, 212(9): 1875-1884.

[3]刘振勇, 李亚光, 李大永. 5754-H111铝合金板材成形极限实验及数值模拟[J]. 锻压技术,2014,39(1):35-40.

Liu Z Y,Li Y G,Li D Y. Forming limit experiment and numerical simulation of 5754-H111 aluminum alloy sheet [J].Forging & Stamping Technology,2014,39(1):35-40.

[4]Lang L, Liu B, Li T, et al. Experimental Investigation on hydromechanical deep drawing of aluminum alloy with heated media[J]. Steel Research International, 2012, 83(3): 230-237.

[5]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.

[6]Lang L, Du P, Liu B, et al. Pressure rate controlled unified constitutive equations based on microstructure evolution for warm hydroforming[J]. Journal of Alloys and Compounds, 2013, 574: 41-48.

[7]Lihui L, Kangning L, Cai G, et al. A critical review on special forming processes and associated research for lightweight components based on sheet and tube materials[J]. Manufacturing Review, 2014, (1): 1-20.

[8]Holmquist T J, Templeton D W, Bishnoi K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. International Journal of Impact Engineering, 2001, 25(3): 211-231.

[9]Lang L H, Wang Z R, Kang D C, et al. Hydroforming highlights: sheet hydroforming and tube hydroforming[J]. Journal of Materials Processing Technology, 2004, 151(1): 165-177.

[10]陈光南, 胡世光. 成形极限曲线(FLC)的新概念[J]. 北京航空航天大学学报, 1992, (4): 48-53.

Chen G N, Hu S G. The new concept of forming limit curve[J]. Journal of Beijing University of Aeronautics and Astronautics, 1992, (4): 48-53.

[11]刘宝胜. 板材充液热成形机理及关键技术研究[D]. 北京: 北京航空航天大学,2012.

Liu B S. Research on Forming Mechanism and Key Technologies of Warm Sheet Hydroforming[D]. Beijing: Beihang University, 2012.

[12]蔡高参. 铝合金板材充液热成形性能及关键技术研究[D]. 北京:北京航空航天大学,2014.

Cai G S. Research on Forming Formability and Key Technologies of Warm Sheet Hydroforming of Aluminum Alloy[D]. Beijing: Beihang University, 2014.


[13]Gaoshen Cai, Lihui Lang, Kangning Liu, et al. Research on the effect of flow stress calculation on aluminum alloy sheet deformation behavior based on warm bulging test[J]. Metals and Materials International, 2015, 21(2): 365-373.

[14]Kaya S, Altan T, Groche P, et al. Determination of the flow stress of magnesium AZ31-O sheet at elevated temperatures using the hydraulic bulge test[J]. International Journal of Machine Tools & Manufacture, 2008, 48: 550-557.

[15]GB/T 15825.8—2008, 金属薄板成形性能与试验方法 第8部分: 成形极限图(FLD)测定指南[S].

GB/T 15825.8—2008, Sheet metal formability and test methods—Part 8: Guidelines for the determination of forming-limit diagrams[S].

[16]刘宝胜,郎利辉,李慧丽,等.铝合金板材温热介质成形本构建模方法综述[J]. 塑性工程学报, 2011, 18(3): 53-60.

Liu B S, Lang L H, Li H L, et al. Review on methods of constitutive modeling in warm/hot hydroforming[J]. Journal of Plasticity Engineering, 2011, 18(3): 53-60.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9