网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
含有纳米级夹杂物的滚动体的应力分析
英文标题:Stress analysis on the rolling element with nano-sized inclusion
作者:孙浩 孙登月 许猛 
单位:燕山大学 
关键词:滚动体 有限元分析 极细网格划分 Abaqus 纳米级夹杂物 
分类号:TG333.7+1
出版年,卷(期):页码:2016,41(5):78-81
摘要:
在滚动轴承工作状态下,滚动接触过程中通常会遇到滚动体内表面含有纳米级夹杂物的情况,纳米级夹杂物会影响滚动体的疲劳寿命。利用TLP3接触疲劳试验机对滚动体的疲劳寿命进行研究,发现纳米级夹杂物是滚动体疲劳寿命的主要影响因素,并基于此问题进行有限元仿真验证。以2 μm夹杂物为模型,突破性地实现了网格局部极细划分,网格最小为0.125 μm。以有限元软件Abaqus为基础,对滚动接触过程中滚动体以及纳米级夹杂物周围进行应力分析。研究发现,在夹杂物处应力集中,最大等效应力为1634 MPa。
 
Under the working condition of rolling bearing, the nano-sized inclusion is often found in the inside surfaces of rolling elements in the process of rolling. Experiments show that the fatigue life of the rolling element is influenced by the nano-sized inclusion. With the help of TLP3 contact fatigue testing machine, fatigue life of rolling elements was studied, and the nano-sized inclusion is regarded as the main factor of fatigue life of rolling elements. Then, finite element simulation result was verified by experiment based on this issue. For the model of the inclusion of 2 μm, the very fine grid division was completed innovatively, and the grid minimum is 0.125 μm. The stress around the nano-sized inclusion and rolling element in rolling process was analyzed by the finite element software Abaqus. The stress concentration is found on the inclusion, and the maximum equivalent stress is 1634 MPa.
基金项目:
河北省自然科学基金资助项目(E2012203008)
作者简介:
孙浩(1989-),男,硕士研究生 孙登月(1964-),男,博士,教授,博士生导师
参考文献:


[1]李边境,尚金龙,张春生,等.变截面细长轴矫直辊型数学建模及仿真[J].锻压技术,2014,39(4):143-148.Li B J, Shang J L, Zhang C S, et al. Mathematics modeling and simulation analysis of roll shape on non-uniform slender axle straightening [J].Forging & Stamping Technology, 2014, 39(4):143-148.
[2]温建民, 陈冠慈.大型滚动轴承力学性能及其疲劳寿命研究[D]. 大连:大连理工大学,2013.Wen J M, Chen G C. Study on Mechanical Property and Fatigue Life of Large Rolling Bearing [D]. Dalian: Dalian University of Technology, 2013.
[3]但锐,张明,张福成. 氢与残余奥氏体对贝氏体钢磨损和滚动接触疲劳行为的影响[D].秦皇岛:燕山大学,2012. Dan R, Zhang M, Zhang F C. Effects of Hydrogen and Retained Austenite on Wear and Rolling Contact Fatigue of Bainitic Steel[D]. Qinhuangdao: Yanshan University, 2012.
[4]刘保平,刘才溢,刘志亮,等.管材十辊矫直机矫直过程与矫直精度分析[J].锻压技术,2014,39(7):66-72. Liu B P, Liu C Y, Liu Z L, et al. Analysis of straightening process and straightening precision ten-roller straightener used for tubes[J].Forging & Stamping Technology, 2014,39(7):66-72.
[5]Mischke J,Jonca J. Simulation of the roller straightening process[J].Journal of Material Processing Technology,1992,91:265-272.
[6]Krause, Gunter. Simulation of material flow, microstructure and properties evolution in bar and wire rolling [J]. Steel Research International, 2007, 78(10-11):745-750.
[7]Chen W M, Li M, Cheng Y T. Analysis on elastic-plastic spherical contact and its deformation regimes, the one parameter regime and two parameter regime, by finite element simulation [J]. Vacuum, 2011, 85: 898-903.
[8]Zheng Q J, Zhu H P, Yu A B. Finite element analysis of the contact forces between a viscoelastic sphere and rigid plane [J]. Powder Technology, 2012, 226:130-142.
[9]Bryant M J, Evans H P, Snidle R W. Plastic deformation in rough surface line contacts-a finite element study [J]. Tribology International, 2012, 46: 269-278.
[10]Chung Y C, Ooi J Y. Linking of discrete element modelling with finite element analysis for analysing structures in contact with particulate solid[J]. Powder Technology,2012, 217: 107-120.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9