网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于ABAQUS的汽车板材成形性能及变形规律研究
英文标题:Research on forming property and deformation regulation for automobile metal sheets based on ABAQUS
作者:海争平  杨志红 
单位:湖南交通职业技术学院 
关键词:汽车板材 流体压力 单向拉伸 成形性能 伸长率 
分类号:TG386.3
出版年,卷(期):页码:2016,41(6):26-31
摘要:

 在板料液压成形过程中,由于流体压力的施加,对板材的受力状态会产生不同程度的影响,同时可以在一定范围内有效提高板材的成形性能。为了分析流体压力下板材成形性能的变化规律,基于有限元软件模拟软件ABAQUS,对不同流体压力条件下的2024铝合金的单向拉伸过程分别进行数值模拟研究,得出了流体压力对板材米塞斯应力分布、轴向应力分布、伸长率及颈缩区厚度的影响规律。研究结果表明,在流体压力作用下,板材的变形更加均匀;并随着流体压力的增大,板材表现出更大的变形潜力,可以达到更大的伸长量。

 

 In sheet metal hydroforming, the stress state of the plate will be influenced by fluid pressure, which can effectively improve the forming performance of the sheet. To study the change law of sheet metal forming properties under fluid pressure, uniaxial tensile processes of aluminum alloy 2024 under different fluid pressures were numerically simulated by finite element software ABAQUS, and the influences of the fluid pressure on the sheet Mises stress distribution, axial stress distribution, elongation and neck shrinkage were obtained. The results show that under the action of fluid pressure, the deformation of the plate is more uniform, and the plate shows more deformation potential with the increase of fluid pressure, which can achieve a larger elongation.

 
基金项目:
基金项目:国家科技重大专项(2013ZX06004009)
作者简介:
作者简介:海争平(1968-),男,硕士,高级工程师 E-mail:haizhengping68@sina.com 通讯作者:杨志红(1969-),女,本科,高级工程师 E-mail:1140745304@qq.com
参考文献:

 
[1]李丽敏, 吴运新. 大规格铝材可逆热轧内应力仿真及轧透性研究 [J]. 计算机仿真, 2008, 25(5): 236-239.Li L M,Wu Y X. Large size aluminum reversible rolling stress simulation and rolling permeability study [J]. Computer simulation, 2008, 25 (5) : 236-239.



[2]Li J J, Carsley J E, Stoughton T B, et al. Forming limit analysis for two-stage forming of 5182-O aluminum sheet with intermediate annealing [J]. International Journal of Plasticity, 2013, 45: 21-43.


[3]Tigoiu S C, Iancu L. Orientational anisotropy and strength-differential effect in orthotropic elasto-plastic materials [J]. International Journal of Plasticity, 2013, 47: 80-110.


[4]徐金志. 双向加压液压胀形极限的研究及其数值模拟 [D]. 秦皇岛: 燕山大学, 2006.Xu J Z. Two-way Hydraulic Pressure Bulging Limit of Study and Its Numerical Simulation [D]. Qinhuangdao:Yanshan University, 2006.


[5]徐金志, 唐景林. 板料双向加压液压胀形数值模拟 [J]. 锻压技术, 2006, 49(5): 43-45.Xu J Z,Tang J L. Biaxial compression hydraulic bulging numerical simulation [J].Forging & Stamping Technology, 2006, 49 (5): 43-45.


[6]Chan K C, Tong G Q. High-strain-rate super plastic gas pressure forming of an Al-4.4Cu-1.5Mg/21 Sicw composite under variable strain rate paths [J]. Materials Science and Engineering A, 2004, 374(1-2): 285-291.


[7]Wang Z J, Song H, Wang Z. Deformation behavior of tc1 titanium alloy sheet under double-sided pressure [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 72-76.


[8]Wang Z J, Wang Z, Li M X. Failure analysis of Al1060 sheet under double-sided pressure deformation conditions [J]. Key Engineering Materials, 2007, 353-358: 603-606.


[9]Liu J G, Wang Z J. Prediction of wrinkling and fracturing in viscous pressure forming (VPF) by using the coupled deformation sectional finite element method [J]. Computational Materials Science, 2010, 48(2): 381-389.


[10]Wang Z J, Liu J G, Wang X Y, et al. Viscous pressure forming (VPF): state-of-the-art and future trends [J]. Journal of Materials Processing Technology, 2004, 151(1-3): 80-87.


[11]Liu J, Ahmetoglu M, Altan T. Evaluation of sheet metal formability, viscous pressure forming (VPF) dome test [J]. Journal of Materials Processing Technology, 2000, 98(1): 1-6.


[12]Shulkin L B, Posterar O R A, Ahmetoglu M A, et al. Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal [J]. Journal of Materials Processing Technology, 2000, 98(1): 7-16.


[13]Mohr D, Gary G. M-shaped Specimen for the high-strain rate tensile testing using a split hopkinson pressure bar apparatus [J]. Experimental Mechanics, 2007, 47(5): 681-692.


[14]Gary G, Mohr D. Modified kolsky formulas for an increased measurement duration of shpb systems [J]. Experimental Mechanics, 2013, 53(4): 713-717.


[15]Dunand M, Gary G, Mohr D. Load-inversion device for the high strain rate tensile testing of sheet materials with hopkinson pressure bars [J]. Experimental Mechanics, 2013, 53(7): 1177-1188.


[16]Torabi A R. Estimation of tensile load-bearing capacity of ductile metallic materials weakened by a v-notch: the equivalent material concept [J]. Materials Science and Engineering A, 2012, 536: 249-255.


[17]Dunand M, Mohr D. Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals [J]. International Journal of Solids and Structures, 2010, 47(9): 1130-1143.


[18]Kuwabara T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations [J]. International Journal of Plasticity, 2007, 23(3): 385-419.


[19]韩非, 万敏, 吴向东, 等. 基于极限应力分析的十字形双向拉伸试件设计 [J]. 北京航空航天大学学报, 2007, 33(5): 600-604.Han F, Wan M, Wu X D, et al. Based on the analysis of the limit stress cross the bidirectional tensile specimen design [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33 (5): 600-604.


[20]万敏, 洪强, 吴向东, 等. 十字形试件双向拉深试验系统建立及加载精度分析 [J]. 机械工程学报, 2001, 37(1): 57-62.Wan M, Hong Q, Wu X D, et al. The bidirectional deep drawing test system establishment and the loading precision analysis [J]. Journal of Mechanical Engineering, 2001, 37 (1): 57-62.


[21]GB/T 228.1—2010, 金属材料 拉伸试验第1部分:室温试验方法[S].GB/T 228.1—2010, Metallic materials-Tensile testing—Part 1: Method of test at room emperature[S].


[22]罗向前, 张轶, 王辉. 板料在单拉及双拉受力状态下的仿真及分析 [J]. 计算机仿真, 2013, 30(4): 238-242.Luo X Q, Zhang Y, Wang H. Sheet metal in a single and double under the tensile stress of the simulation and analysis [J]. Computer Simulation, 2013, 30 (4):238-242.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9