网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于机器视觉的冲裁断面质量检测
英文标题:Inspection of blanking section quality based on machine vision
作者:陈康 肖小亭 陈苑坤 王泽涛 孙友松 阮卫平 
单位:广东工业大学 广东锻压机床厂有限公司 
关键词:机器视觉 冲裁断面 质量检测  LabVIEW 
分类号:TG386
出版年,卷(期):页码:2016,41(6):109-114
摘要:

 针对当前冲裁断面质量检测中出现的检测手段少、检测速度低和误检率高等问题,提出了基于机器视觉的冲裁断面质量检测新方法。该方法以LabVIEW软件为平台、以图像处理技术为核心针对冲裁断面尺寸进行检测。阐述了检测系统的组成原理、机器视觉硬件设计和检测算法研究。在光源和镜头的配合下,利用USB工业相机采集断面图像,再利用LabVIEW的Vision模块进行图像处理,最终得到冲裁断面的分区尺寸,从而判断冲裁断面质量是否合格。实验结果表明,基于机器视觉的冲裁断面质量检测能够快速准确的判断冲裁断面的断面特征,可以满足断面质量检测的要求。

 

 For the problem of lacking detection means, low detection rate, and high false rate etc. in the inspection of blanking section quality, a new detection method was proposed based on machine vision, which was carried out by the platform of software LabVIEW and image processing technology. It was described the composition and principle of the system, hardware design and the study on detection algorithm. Finally, the partition size of blanking section was obtained under the cooperation of light source and the lens by USB industrial camera capturing the section image and vision module in NI LabVIEW processing the image, and judged whether the product was qualified or not. The results show that this method can quickly and accurately capture the section characteristics of the blanking section. It also completely meets the requirements of blanking section quality inspection.

基金项目:
基金项目:广东省战略性新兴产业发展专项(2012A090100014);广东省大学生创新创业训练计划项目(201511845028)
作者简介:
作者简介:陈康(1992-),男,硕士研究生 E-mail:chenkang_hugh@163.com 通讯作者:肖小亭(1957-),男,博士,教授,博士生导师 E-mail:xiaoxt@gdut.edu.cn
参考文献:

 


 


[1]王燕, 林苏斌, 缪希仁. 基于LabVIEW的机器视觉在玻璃缺陷检测中的运用[J]. 工业控制计算机, 2011, 24(4):75-77.Wang Y,Lin S B,Mou X R, Application of machine vision in detection of glass defect based on LabVlEW[J]. Industrial Control Computer, 2011, 24(4):75-77.


[2]方胜,李有森,李魏魏,等.基于NI Vision Assistant的机器视觉在钢球表面检测中的应用[J].仪表技术,2008,(5):27-29.Fang S, Li Y S, Li W W, et al. Application of machine vision in surface detection of steel ball based on NI vision assistant[J]. Instrumentation Technology,2008,(5):27-29.


[3]Mario Mollo Neto, Odivaldo Vendrametto,Jose Paulo Alves Fusco. Automated system for leather inspection:The machine vision[J]. Emerfing Solutions for Future Manufacturing Systems,2005,159: 387-396.


[4]Sen D, Pal S K. Gradient histogram:Thresholding in a region of interest for edge detection[J].Image and Vision Computing,2009,(4):677-695.


[5]黄柳倩. 基于机器视觉的冲压件缺陷检测系统研究[D]. 广州:广东工业大学, 2012.Huang L Q. Research on Defect Inspection System of Stamping Parts Based on Machine Vision[D]. Guangzhou: Guangdong University of Technology,2012.


[6]凌云,王一鸣,孙明,等.基于机器视觉的大米外观品质检测装置[J].农业机械学报,2005,36(9):89-92.Ling Y,Wang Y M,Sun M, et al. A machine vision based instrument for rice appearance quality[J]. Transactions of the Chinese Society for Agricultural Machinery,2005,36(9):89-92.


[7]Nashat S, Abdullah A, Abdullah M Z. Machine vision for crack inspection of biscuits featuring pyramid detection scheme[J]. Journal of Food Engineering, 2014,120(1):233-247.


[8]Kolyuchkin V  Ya, Nguyen Cong Minh, Tran Tine Hai. Image processing algorithms in machine vision systems of robotized industrial lines[J]. Neurocomputers Development and Application, 2014,3,44-51.


[9]吕文阁,刘建群,杜建辉,等.应用机器视觉的工件表面质量检测[J].机床与液压,2006,(4):154-155,158.Lv W G, Liu J Q,Du J H, et al. The quality testing of workpiece surface based on machine vision [J].Machine Tool & Hydraulics, 2006,(4):154-155,158.


[10]李炜,黄心汉,王敏,等.基于机器视觉的带钢表面缺陷检测系统[J].华中科技大学学报:自然科学版,2003,31(2):72-74.Li W, Huang X H, Wang M, et al. The steel surface inspection system based on computer vision[J]. Journal of Huangzhong university of Science and Technology:Natural Science Edition, 2003,31(2):72-74.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9