[1]彭向前.产品表面缺陷在线检测方法研究及系统实现[D].武汉:华中科技大学,2008.
Peng X Q, Online Defects Inspection Theory and Algorithms for Product Surface based on Distribution Machine Vision [D]. Wuhan: Huazhong University of Science and Technology, 2008.
[2]王震宇.基于机器视觉钢板表面缺陷检测技术研究[J].计算机与现代化,2013,(7):130-134.
Wang Z Y. Research on steel plate surface defects detection method based on machine vision [J]. Computer and Modernization, 2013, (7):130-134.
[3]聂振宇.金属部件表面缺陷视觉检测系统研究[D].长沙:中南大学,2013.
Nie Z Y. Research on Metal Parts Surface Defect Visual Inspection System [D]. Changsha:Central South University, 2013.
[4]贾丹.摄像机现场标定算法研究[D].哈尔滨:哈尔滨工程大学,2007.
Jia D. Researches on Site Camera Calibration Methods [D]. Harbin: Harbin Engineering University, 2007.
[5]罗珍茜,薛雷,孙峰杰,等,基于HALCON的摄像机标定[J].电视技术,2010,34(4):100-102.
Luo Z Q, Xue L, Sun F J,et al. Camera calibration based on HALCON [J]. Video Engineering, 2010, 34(4):100-102.
[6]Noguchi R, Hayashi J I. A method for character and photograph segmentation using dynamic thresholding[A]. The Workshop on Frontiers of Computer Vision. IEEE[C]. Mokpo,2015.
[7]李大成,梁晋,胡浩,等. 数字图像相关法用于金属薄板成形性能研究[J]. 锻压技术,2014,39(5):23-28.
Li D C,Liang J,Hu H,et al. Digital image correlation measurement for forming properties of sheet metal [J]. Forging & Stamping Technology,2014,39(5):23-28.
[8]斯蒂格,尤里奇,威德曼.机器视觉算法与应用[M].杨少荣,译.北京:清华大学出版社,2008.
Steger C, Ulrich M, Wiedemann C. Machine Vision Algorithms and Applications [M]. Translated by Yang S R. Beijing: Tsinghua University Press,2008.
[9]潘武,张莉彦,徐俊成,等.基于机器视觉的工件的在线检测[J].组合机床与自动化加工技术,2012,(7):75-78.
Pan W, Zhang L Y, Xu J C, et al. The research about on-line detection of work piece based on machine vision [J]. Combined Machine Tool and Automatic Machining Technology, 2012, (7):75-78.
[10]黄柳倩.基于机器视觉的冲压件缺陷检测系统研究[D].广州:广东工业大学,2012.
Huang L Q. Research of Stamping Defect Detection System based on Machine Vision[D]. Guangzhou: Guangdong University of Technology,2012.
|