[1] Jurgen Hirsch. Aluminium in innovative light-weight car design[J]. Materials Transactions,2011,52(5):818-824.
[2] Sakurai T. Aluminum alloy sheet trends for automotive body panels[J]. Kobe Steel Engineering Reports, 2007,57(2):45-50.
[3] Mallick P K. Material, Design and Manufacturing for Lightweight Vehicles[M]. London:Woodhead Publishing in Materials,2010.
[4] 黄世霖,张金换,王晓冬,等. 汽车碰撞与安全[M]. 北京:清华大学出版社, 2000.
Huang S L, Zhang J H, Wang X D, et al. Car Crash and Safety[M]. Beijing: Tsinghua University Press, 2000.
[5] Chen Y, Clausen A H, Hopperstad O S,et al. Stress-strain behaviour of aluminium alloys at a wide range of strain rates[J]. International Journal of Solids and
Structures,2009,46:3825-3835.
[6] Smerd R, Winkler S, Salisbury C, et al. High strain rate tensile testing of automotive aluminum alloy sheet[J]. International Journal of Impact Engineering,2005,32:541-560.
[7] Amit Pandey, Khan Akhtar S, Eun-Young Kim, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J]. International Journal of Plasticity,2013,41:165-188.
[8] Picu R C,Vincze G, Ozturk F, et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O[J]. Materials Science and Engineering A,2005,390: 334-343.
[9] Akhtar S Khan, Muneer Baig. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy[J]. International Journal of Plasticity,2011,27: 522-538.
[10]Clausen Arild H, Tore Brvik, Hopperstad Odd S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering A,2004,364:260-272.
[11]Farhoud Kabirian, Khan Akhtar S, Amit Pandey. Negative to positive strain rate sensitivity in 5XXX series aluminum alloys: Experiment and constitutive modeling[J]. International Journal of Plasticity,2014,55:232-246.
[12]Hadianfard M J, Smerd R, Winkler S, et al. Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys[J]. Materials Science and Engineering A,2008,492:283-292.
[13]Djapic Oosterkamp L, Ivankovic A, Venizelos G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A,2000,278:225-235.
[14]Zhang D N,Shangguan Q Q, Xie C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds,2015,619: 186-194.
[15]Khan Akhtar S, Suh Yeong S, Xu Chen, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity,2006,22: 195-209.
[16]Xu S, Tyson W R, Bouchard R, et al. Effects of strain rate and temperature on tensile flow behavior and energy absorption of extruded magnesium AM30 Alloy[J]. Journal of Materials Engineering and Performance,2009,11,(8):1091-1101.
[17]Oliver S, Jones T B, Fourlaris G. Dual phase versus TRIP strip steels: Comparison of dynamic properties for automotive crash performance[J]. Journal of Materials Science & Technology,2007,(23):423-431.
[18]Pantelakis Sp G,Alexopoulos N D, Chamos A N. Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications[J]. Journal of Engineering Materials and Technology,2007,129: 422-430.
|