网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车覆盖件用6016铝合金板高应变速率敏感性试验研究
英文标题:Experimental study on high strain rate sensitivity of aluminum alloy sheets 6016 used in automobile panels
作者:李言波 刁可山     蒋浩民 
单位:宝山钢铁股份有限公司研究院 汽车用钢开发与应用技术国家重点实验室(宝钢) 
关键词:汽车覆盖件 6016铝合金板 高应变速率敏感性 Johnson-Cook模型 耐碰撞性能 
分类号:TG386
出版年,卷(期):页码:2016,41(9):121-125
摘要:

 汽车碰撞(被动)安全性常用仿真分析方法来预测,高应变速率下材料性能参数的准确性关系到汽车碰撞仿

 真分析的精度。针对国内外的4种汽车覆盖件用6016铝合金板,进行了不同应变速率(5~500 s-1范围内)
 
的高速拉伸试验,利用Johnson-Cook模型进行数据处理,系统研究了4种汽车覆盖件用6016铝合金板的力学
 
性能(屈服强度、抗拉强度及断裂伸长率)和耐碰撞性能的应变速率敏感性。研究结果表明,4种6016铝合
 
金板的屈服强度和抗拉强度具有较低的速率敏感性,其断裂伸长率和耐碰撞性能具有较高的速率敏感性。
 

 Automotive crash safety is commonly predicted by simulation analysis, and its accuracy is 

 closely related to materials properties under high strain rates. For four kinds of automotive 
 
aluminum alloy sheets 6016 at home and abroad, high speed tensile tests were carried out at 
 
different stain rates(5-500 s-1), and data were analyzed by the model Johnson-Cook. Then, 
 
their mechanical properties (yield strength, tensile strength and elongation) and the stain 
 
rate sensitivity of crashworthiness were studied systemically. The results show that yield 
 
strength and tensile strength of aluminum alloy sheet 6016 have a low strain rate sensitivity, 
 
while the elongation and crashworthiness of aluminum alloy sheet 6016 have a high strain rate 
 
sensitivity.
基金项目:
作者简介:
李言波(1987-),男,硕士,助理工程师
参考文献:

 
[1]   Jurgen Hirsch. Aluminium in innovative light-weight car design[J]. Materials Transactions,2011,52(5):818-824.


 
[2]   Sakurai T. Aluminum alloy sheet trends for automotive body panels[J]. Kobe Steel Engineering Reports, 2007,57(2):45-50.

 
[3]   Mallick P K. Material, Design and Manufacturing for Lightweight Vehicles[M]. London:Woodhead Publishing in Materials,2010.

 
[4]   黄世霖,张金换,王晓冬,等. 汽车碰撞与安全[M]. 北京:清华大学出版社, 2000. 

Huang S L, Zhang J H, Wang X D, et al. Car Crash and Safety[M]. Beijing: Tsinghua University Press, 2000.

 
[5]   Chen Y, Clausen A H, Hopperstad O S,et al. Stress-strain behaviour of aluminium alloys at a wide range of strain rates[J]. International Journal of Solids and 

Structures,2009,46:3825-3835.

 
[6]   Smerd R, Winkler S, Salisbury C, et al. High strain rate tensile testing of automotive aluminum alloy sheet[J]. International Journal of Impact Engineering,2005,32:541-560. 


[7]   Amit Pandey, Khan Akhtar S, Eun-Young Kim, et al. Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates[J]. International Journal of Plasticity,2013,41:165-188.

 
[8]   Picu R C,Vincze G, Ozturk F, et al. Strain rate sensitivity of the commercial aluminum alloy AA5182-O[J]. Materials Science and Engineering A,2005,390: 334-343. 


[9]   Akhtar S Khan, Muneer Baig. Anisotropic responses, constitutive modeling and the effects of strain-rate and temperature on the formability of an aluminum alloy[J]. International Journal of Plasticity,2011,27: 522-538. 


[10]Clausen Arild H, Tore Brvik, Hopperstad Odd S, et al. Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality[J]. Materials Science and Engineering A,2004,364:260-272. 


[11]Farhoud Kabirian, Khan Akhtar S, Amit Pandey. Negative to positive strain rate sensitivity in 5XXX series aluminum alloys: Experiment and constitutive modeling[J]. International Journal of Plasticity,2014,55:232-246. 


[12]Hadianfard M J, Smerd R, Winkler S, et al. Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys[J]. Materials Science and Engineering A,2008,492:283-292. 


[13]Djapic Oosterkamp L, Ivankovic A, Venizelos G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A,2000,278:225-235. 


[14]Zhang D N,Shangguan Q Q, Xie C J, et al. A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds,2015,619: 186-194. 


[15]Khan Akhtar S, Suh Yeong S, Xu Chen, et al. Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling[J]. International Journal of Plasticity,2006,22: 195-209. 


[16]Xu S, Tyson W R, Bouchard R, et al. Effects of strain rate and temperature on tensile flow behavior and energy absorption of extruded magnesium AM30 Alloy[J]. Journal of Materials Engineering and Performance,2009,11,(8):1091-1101. 


[17]Oliver S, Jones T B, Fourlaris G. Dual phase versus TRIP strip steels: Comparison of dynamic properties for automotive crash performance[J]. Journal of Materials Science & Technology,2007,(23):423-431. 


[18]Pantelakis Sp G,Alexopoulos N D, Chamos A N. Mechanical performance evaluation of cast magnesium alloys for automotive and aeronautical applications[J]. Journal of Engineering Materials and Technology,2007,129: 422-430.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9