网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元仿真的钛合金翼形件锻造过程
英文标题:Forging process of titanium alloy winglike part based on FEM simulation method
作者:张明杰 黄利军 李恒正 孟瑶 李雪飞 
单位:北京航空材料研究院 北京航天新风机械设备有限责任公司 
关键词:钛合金TA15 翼形锻件 有限元模拟 锻造工艺 温度场 应力场 
分类号:TG316
出版年,卷(期):页码:2016,41(11):32-37
摘要:

过有限元模拟方法,研究了TA15钛合金翼形件锻造过程中应力、应变、温度和变形速率的分布和变化规律,分析了锻造工艺参数对钛合金翼形件坯料变形行为的影响。考虑到大变形过程容易引发动态再结晶,对锻件组织和力学性能有较大影响,在有限元建模过程中嵌入了动态再结晶模型,对锻件热变形过程中的再结晶行为进行模拟分析。结果表明,锻件翼板部分在成形过程中存在热传递和形变产热的共同作用,温度场、应力场分布都比较复杂,但温度分布整体呈现中间高、边缘低的特征。同时,由于变形过程中翼板和短轴部分坯料的变形量较大,变形累积的位错密度较高,因此,在形变产热引起的局部升温作用下,翼板部分组织中动态再结晶现象比较明显。

Based on FEM simulation method, the distributions of stress, strain, temperature and strain rate during forging stage and their regulation were studied, and the influences of technique parameters on deformation behavior of titanium billets were analyzed in the forging process of winglike titanium alloy TA15. Considering the large deformation causing dynamic recrystallization and influence on the microstructure and mechanical properties of alloy, the DRX model was combined in the FEM programs and used to simulate recrystallization behavior during hot forging. The results show that the plate of forging bears the interaction between thermal transmission and heat generation, so the distribution of temperature and stress are very complicated with the feature of higher on the center and lower on the edges. Meanwhile, the large deformation of wing plate and short axis result in high dislocation density. Thus, dynamic recrystallization phenomenon is obvious under the rising of local temperature caused by deformation.
基金项目:
作者简介:
张明杰(1984-),男,博士,工程师
参考文献:

[1]方洋旺,柴栋,毛东辉,等. 吸气式高超声速飞行器知道与控制研究现状及发展趋势[J]. 航空学报, 2014, 35(7): 1776-1786.Fang Y W, Chai D, Mao D H, et al. Statuts and development trend of the guidance and control for air- breathing hypersonic vehicle [J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(7): 1776-1786.
[2]金和喜, 魏克湘, 李建明, 等. 航空用钛合金研究进展[J]. 中国有色金属学报,2015, 25(2): 280-292.Jin H X, Wei K X, Li J M, et al. Research development of titanium alloy in aerospace industry [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2): 280-292.
[3]帅美荣, 黄庆学, 朱艳春, 等. TC4钛合金棒材精密连轧宽展模型研究[J]. 稀有金属材料与工程,2013, 42 (5): 909-913.Shuai M R, Huang Q X, Zhu Y C, et al. Spread model for TC4 alloy rod during the three-roll tandem rolling process [J]. Rare Metal Materials and Engineering, 2013, 42 (5): 909-913.
[4]李礼, 张晓泳, 李超, 等. TC18钛合金盘件等温模锻过程有限元模拟及试验[J]. 中国有色金属学报, 2013, 23 (12): 3323-3334.Li L, Zhang X Y, Li C, et al. Finite element simulation and experiment of isothermal die forging process of TC18 Ti alloy disc [J]. The Chinese Journal of Nonferrous Metals, 2013, 23 (12): 3323-3334.
[5]杨晓东, 陈明和, 肖宁斌, 等. BTi6431S钛合金盒形件热拉深成形工艺数值模拟[J]. 南京航空航天大学学报, 2012, 44(Z1): 124-127.Yang X D, Chen M H, Xiao N B, et al. Numerical simulation for hot deep drawing process of titanium alloy BTi6431S rectangle box [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(Z1): 124-127.
[6]朱帅, 杨合, 郭良刚, 等. TA15钛合金环件径轴向辗轧成形全过程组织演变模拟[J]. 航空学报, 2014, 35(11): 3145-3155.Zhu S, Yang H, Guo L G, et al. Simulation of microstructure evolution during the whole process of rolling of TA15 titanium alloy ring [J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35 (11): 3145-3155.
[7]甘国强, 李萍, 薛克敏, 等. TA15钛合金热变形过程中给予介观尺度的相变模拟研究[J]. 稀有金属, 2015, 39(1): 91-96.Gan G Q, Li P, Xue K M, et al. Mesoscopic simulation of phase transformation in TA15 alloy based on isothermal hot compression [J]. Chinese Journal of Rare Metals, 2015, 39(1): 91-96.
[8]雷文光, 毛小南, 卢亚峰, 等. TC21钛合金锻件淬火过程温度场及热应力常数值模拟[J]. 稀有金属材料与工程, 2011, 40 (10): 1721-1726.Lei W G, Mao X N, Lu Y F, et al. Numerical simulation of temperature field and thermal stress field in quenching process of TC21 titanium alloy forging [J]. Rare Metal Materials and Engineering, 2011, 40 (10): 1721-1726.
[9]黄勇, 李慧, 王新鑫, 等. 不同驱动力对熔池表面变形行为影响的数值模拟[J].焊接学报, 2016, 37 (8): 45-49.Huang Y, Li H, Wang X X, et al. FEM analysis of the influence of different driving force on the deformation behavior of weld pool surface [J]. Transactions of the China Welding Institution, 2016, 37 (8): 45-49.
[10]薛松, 周杰, 熊运森, 等. TA15钛合金大型整框锻造成形数值模拟与实验研究[J]. 热加工工艺, 2011, 40 (11): 73-75.Xue S, Zhou J, Xiong Y S, et al. Numerical simulation and experimental study on large whole frame forging of TA15 alloy [J]. Hot Working Technology, 2011, 40 (11): 73-75.
[11]韩冠军,杨合,孙志超,等. TA15合金大型筋板件等温局部加载晶粒尺寸演化研究[J]. 塑性工程学报, 2009, 16 (5):112-117.Han G J, Yang H, Sun Z C, et al. Numerical simulation of microstructure evolution of TA15 alloy large-scale rib-web parts during isothermal local loading process [J]. Journal of Plasticity Engineering, 2009, 16 (5):112-117.
[12]张雪敏, 曹福洋, 岳红彦, 等. TC11钛合金热变形本构方程的建立[J]. 稀有金属材料与工程, 2013, 42 (5): 937-941.Zhang X M, Cao F Y, Yue H Y, et al. Establishment of constitutive equations of TC11 alloy during hot deformation [J]. Rare Metal Materials and Engineering, 2013, 42 (5): 937-941.
[13]姚彭彭, 李萍, 李成铭, 等. 基于摩擦修正的TA15钛合金热变形行为及加工图[J]. 精密成形工程, 2014,6 (4): 49-51.Yao P P, Li P, Li C M, et al. Hot deformation behavior and processing map of TA15 titanium alloy based on friction correction [J]. Journal of Netshape Forming Engineering, 2014, 6(4): 49-51.
[14]姚彭彭, 李萍, 李成铭, 等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属,2015, 39 (11): 967-974.Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field [J]. Chinese Journal of Rare Metals, 2015, 39 (11): 967-974.
[15]张雷. TA15合金高温塑性行为及微观组织模拟研究[D]. 重庆: 重庆大学,2013.Zhang L. Study on Microstructure Simulation and Thermoplastic Flow Stress of TA15 [D]. Chongqing: Chongqing University, 2013.
[16]冯玮, 徐富家. 20CrMnTiH钢热压缩微观组织演变及动态再结晶模型[J]. 塑性工程学报, 2014, 21(3): 78-84.Feng W, Xu F J. Microstructure evolution and dynamic recrystallization model of 20CrMnTiH steel during hot compression [J]. Journal of Plasticity Engineering, 2014, 21(3): 78-84.
[17]李付国, 蔡军, 耿健. 锻模型腔表面热负荷分析[J]. 锻压装备与制造技术, 2007, 42 (1): 48-51.Li F G, Cai J, Geng J. Analysis of thermal load for die cavity surface [J]. China Metalforming Equipment & Manufacturing Technology, 2007, 42(1):48-51.
[18]李茂林. 非局部摩擦及应变梯度理论在超塑性成型中的应用研究[D]. 南昌: 南昌大学, 2009. Li M L. The Application Research of Non-Local Friction Model and Strain Gradient Theory in Superplastic Forming [D]. Nanchang: Nanchang University, 2009.
[19]黄艳伟. 考虑界面变形条件的金属体积成形摩擦模型的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006.Huang Y W. Research on Friction Model of Bulk Metal Forming Considering Boundary Deformation Conditions [D]. Harbin: Harbin Institute of Technology, 2006.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9