网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于数字图像相关技术的金属冲裁过程材料变形分析
英文标题:Analysis on material deformation in metal blanking process based on digital image correlation technique
作者:陈子砚 方刚 雷丽萍 
单位:清华大学 
关键词:数字图像相关 板料冲裁 大变形 断裂 
分类号:TG386
出版年,卷(期):页码:2016,41(11):47-53
摘要:
为准确分析金属板料冲裁过程中材料变形及断裂行为,构建了一个基于二维数字图像相关方法的原位应变测量系统。对CuSn0.15铜合金板材开展系列冲裁实验,通过该原位应变测量系统有效地跟踪记录了冲裁过程的局部大变形,获取了冲裁过程的各应变分量的应变场分布,在此基础上分析了应变演变规律和不同冲裁间隙的应变场差异。结果表明,剪切应变在冲裁过程前期起主导作用,而拉伸应变的急剧增大是在冲裁过程后期材料内部出现微裂纹的主要原因。不同冲裁间隙的应变场差异主要体现在拉伸应变的分化上,拉伸应变的差异是影响光亮带占比的主要因素。研究结果不仅为冲裁工艺的制定提供基础数据,还可为评定数值模型的有效性提供依据。
 
 

In order to investigate the material deformation and fracture behavior in the metal sheet blanking process, an in-situ strain measurement system was established by 2D digital image correlation technique. Then, a series of blanking experiments were carried out on copper alloy sheet CuSn0.15, and the strain distributions of the strain components in the blanking process were obtained by in-situ strain measurement system recording the localized large-deformation. Furthermore, the regulation of strain and the difference of strain field with different clearances were analyzed further. The results indicate that the shear strain is predominant at the early stage of the blanking process, while a rapid increase of tensile strain at the later stage leads to the micro cracks inside the material. Thus, the difference of strain field with different clearances is mainly shown on the distinction of tensile strain, and the difference of tensile strain is a main factor influencing the proportion of bright region in the thickness direction of sheet metal. The experiment results provide basic data not only for blanking technology, but also for verifying the effectiveness of the numerical model.

基金项目:
国家自然科学基金资助项目(51375256)
作者简介:
陈子砚(1990-),女,硕士研究生 雷丽萍(1968-),女,博士,副研究员
参考文献:


[1]Hambli R. Design of experiment based analysis for sheet metal blanking processes optimisation[J]. International Journal of Advanced Manufacturing Technology, 2002, 19(6):403-410.
[2]Tekiner Z, Nalbant M, Gueruen H. An experimental study for the effect of different clearances on burr, smooth-sheared and blanking force on aluminium sheet metal [J]. Materials & Design, 2006, 27(10):1134-1138.
[3]张磊, 牛秋林, 安庆龙, 等. 冲裁间隙与速度对冲裁件质量影响的实验研究[J]. 模具制造, 2011, (3):23-25. Zhang L, Niu Q L, An Q L, et al. Experimental study of effects of blanking clearance and stamping speed on the quality of blanking pieces[J]. Die & Mould Manufacture, 2012, (3): 23-25.
[4]Subramonian S, Altan T, Ciocirlan B, et al. Optimum selection of variable punch-die clearance to improve tool life in blanking non-symmetric shapes[J]. International Journal of Machine Tools and Manufacture, 2013,75:63-71.
[5]方刚, 曾攀. 金属板料冲裁过程的有限元模拟[J]. 金属学报, 2001,37(6):653-657.Fang G, Zeng P. Finite element simulation for blanking process of sheet metal[J]. Acta Metallurgica Sinica, 2001, 37(6): 653-657.
[6]郭钊, 唐文亭, 曹立勋. 圆管异形孔冲裁工艺设计及有限元模拟[J]. 锻压技术, 2014,39(8):140-145.Guo Z, Tang W T, Cao L X, Process design and numerical simulation on shaped hole blanking of steel round pipe[J]. Forging & Stamping Technology, 2014,39(8):140-145.
[7]刘倩, 韩静涛, 刘靖, 等. 韧性断裂准则及损伤模型在冲裁有限元模拟中的应用研究[J]. 锻压技术, 2015,40(6):28-33.Liu Q, Han J T, Liu J, et al. Research on the application of ductile fracture criteria and damage models in finite element simulation of blanking process[J]. Forging & Stamping Technology, 2015,40(6):28-33.
[8]Husson C, Coireia J P M, Daridon L, et al. Finite elements simulations of thin copper sheets blanking: Study of blanking parameters on sheared edge quality[J]. Journal of Materials Processing Technology, 2008, 199(1-3):74-83.
[9]Achouri M, Germain G, Dal Santo P, et al. Experimental and numerical analysis of micromechanical damage in the punching process for high-strength low-alloy steels[J]. Materials & Design, 2014, 56:657-670.
[10]刘倩,刘靖,张永军,等. 软模冲裁工艺数值模拟及变形机理[J]. 塑性工程学报, 2016,23(1):40-45.Liu Q, Liu J, Zhang Y J, et al. Numerical simulation and deformation mechanism of flexible-die blanking[J]. Forging & Stamping Technology, 2016,23(1):40-45.
[11]Luo M, Dunand M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading-Part II: Ductile fracture [J]. International Journal of Plasticity, 2012,32: 36-58.
[12]Sutton M A, Mingqi C, Peters W H, et al. Application of an optimized digital correlation method to planar deformation analysis[J]. Image and Vision Computing, 1986,4(3):143-150.
[13]Aoki I, Takahashi T. Material flow analysis on shearing process by applying Fourier phase correlation method-analysis of piercing and fine-blanking[J]. Journal of Materials Processing Technology, 2003, 134:45-52.
[14]Leung Y C, Chan L C, Tang C Y, et al. An effective process of strain measurement for severe and localized plastic deformation[J].International Journal of Machine Tools & Manufacture, 2004, 44(7-8):669-676.
[15]潘兵, 谢惠民, 夏勇, 等. 数字图像相关中基于可靠变形初值估计的大变形测量[J]. 光学学报, 2009,29(2):400-406.Pan B, Xie H M, Xia Y, et al. Large-deformation measurement based on reliable initial guess in digital image correlation method [J]. Acta Optica Sinica, 2009,29(2):400-406.
[16]赵加清. 数字图像相关方法中的快速、高精度算法研究及应用[D]. 北京:清华大学, 2012.Zhao J Q. Research and Applications of the Fast and Accurate Measurement Algorithms in Digital Image Correlation [D].Beijing:Tsinghua University, 2012.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9