网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
轧制-剪切-弯曲变形AZ31镁合金板材的表面质量缺陷与机理研究
英文标题:Study on surface quality defects and mechanism of AZ31 magnesium alloy sheet by rolling-shearing-bending deformation
作者:蒋伟 周涛 宋登辉 范恒瑞 邱泽林 
单位:重庆理工大学 
关键词:轧制-剪切-弯曲变形 AZ31镁合金 裂纹 表面质量缺陷 通道间隙 
分类号:TG376.5
出版年,卷(期):页码:2017,42(1):27-32
摘要:

通过分析轧制-剪切-弯曲AZ31镁合金板材的裂纹特征,并采用有限元数值模拟和金相观测,研究了不同通道间隙下AZ31镁合金板材表面质量缺陷与应力、应变、模具弯曲半径、微观组织结构的关系。结果表明:板材易在第2弯曲转角处出现非连续横向裂纹,同时模具进口平面处板材易发生连续的起皱现象;随着通道间隙的增大,模具转角处应力、应变值逐渐变小,网格畸变程度逐渐降低,同时第2弯曲转角半径的增大也有利于制备出表面质量良好的AZ31镁合金板材;由于轧制、剪切、弯曲变形的应力、应变积累过大,裂纹主要出现在剪切带相对集中、孪晶交叉较多的区域,裂纹的拓展主要在孪晶界附近。

Through the crack characteristic analysis of rolling-shearing-bending for AZ31 magnesium alloy sheet, and by using the finite element numerical simulation and metallographic observation, the relationships among the stress, strain, die bending radius, microstructure and the surface quality defects of AZ31 magnesium alloy sheet with different channel clearances were studied.The results show that the plate easily appears discontinuous transverse cracks in the second bending corner.At the same time, the phenomenon of continuous wrinkling occurs at the sheet of import plane of die. With the increase of channel clearance, the stress and strain at the corner of die gradually become smaller, and the mesh distortion is gradually reduced. The increase of the radius of the second bending corner is also beneficial to the preparation of AZ31 magnesium alloy sheet with good surface quality. Because the accumulation of stress and strain is too large which is caused by rolling-shearing-bending deformation,the cracks mainly appear in the region where the shear zone is relatively concentrated and the twin intersections are more, and the crack propagation is mainly near the twin boundaries.

基金项目:
国家自然科学青年基金资助项目(51301213);重庆市基础与前沿研究计划项目(cstc2014jcyjA50008;cstc2016jcyjA0452)
作者简介:
蒋伟(1994-),男,本科 E-mail:1105791621@qq.com 通讯作者:周涛(1981-),男,博士,副教授 E-mail:tzhou1118@163.com
参考文献:
[1]陈振华.变形镁合金[M].北京:化学工业出版社,2005.

Chen Z H. Wrought Magnesium Alloy[M]. Beijing: Chemical Industry Press, 2005.

[2]Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scripta Materialia, 2011, 64(1): 69-72.

[3]Sheikh H. Role of shear banding on the microtexture of an Al-Mg alloy processed by hot/high strain rate accumulative roll bonding[J]. Scripta Materialia, 2011, 64(6): 556-559.

[4]Utsunomiya H, Hatsuda K, Sakai T, et al. Continuous grain refinement of aluminum strip by conshearing[J]. Materials Science and Engineering: A, 2004, 372(1-2): 199-206.

[5]Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process[J]. Journal of Materials Processing Technology, 2011, 211(6): 1085-1090.

[6]程永奇. AZ31镁合金板材等径角轧制及冲压性能研究[D]. 长沙: 湖南大学, 2007.

Cheng Y Q. Research on Equal Channel Angular Rolling and Drawability of AZ31 Magnesium Alloy Sheet[D]. Changsha: Hunan University, 2007.

[7]仇治勤. 等径角轧制AM60镁合金板材的显微组织与力学性能[D]. 长沙: 湖南大学, 2008.

Qiu Z Q. Microstructure and Mechanical Properties of AM60 Magnesium Alloy Sheet Processed by Equal Channel Angular Rolling[D]. Changsha: Hunan University, 2008.

[8]Takayama Y, Szpunar J A, Jeong H T. Cube texture development in an Al-Mg-Mn alloy sheet worked by continuous cyclic bending [J]. Materials Transactions, 2001, 42(10): 2050-2058.

[9]Huang J YJiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001, 49(9):1497-1505.

[10]Hosokawa H, Chino Y, Shimojima K, et al. Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet[J]. Materials Transactions, 2003, 44(4): 484-489.

[11]詹美燕, 李元元, 陈宛德, . 大应变轧制技术制备细晶AZ31镁合金板材[J]. 华南理工大学学报:自然科学版, 2007, 35(8): 16-21.

Zhan M Y, Li Y Y, Chen W D, et al. Preparation of fine grained AZ31 magnesium alloy sheet by large strain rolling technique[J]. Journal of South China University of Technology: Natural Science Edition, 2007, 358: 16-21.

[12]蒋伟, 周涛, 宋登辉, . AZ31镁合金轧制-剪切-弯曲变形工艺数值模拟研究[J]. 精密成形工程, 2016, 8(5): 121-125.

Jiang W, Zhou T, Song D H, et al. Numerical simulation of rolling-shearing-bending deformation process for AZ31 magnesium alloy[J]. Journal of Netshape Forming Engineering, 2016, 8(5): 121-125.

[13]程永奇, 陈振华, 夏伟军, . AZ31镁合金板材等径角轧制变形规律研究[J]. 塑性工程学报, 2007, 14(4): 127-132.

Cheng Y Q, Chen Z H, Xia W J, et al. Study on deformation law of equal channel angular rolling of AZ31 magnesium alloy sheet[J]. Journal of Plasticity Engineering, 2007, 14(4): 127-132.

[14]Lee J C, Seok H K, Suh J Y, et al. Structural evolution of a strip-cast Al alloy sheet processed by continuous equal-channel angular pressing[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 665-673.

[15]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions, 2003, 44(4): 426-435.

[16]Banett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J]. Jounal of Light Metals, 2001,1(3): 167-177.

[17]Alkorta J, Rombouts M, Messemaeker J D, et al. On the impossibility of multi-pass equal-channel angular drawing[J]. Scripta Materialia, 2002, 47(1): 13-18.

[18]张雷, 杨续跃, 霍庆欢, . AZ31 镁合金板材低温双向反复弯曲变形及退火过程的组织演化[J]. 金属学报, 2011, 47(8): 990-996.

Zhang L, Yang X Y, Huo Q H, et al. Microstructure evolution of AZ31 magnesium alloy sheet under low temperature bidirectional repeated bending deformation and annealing process[J]. Journal of Metals, 2011, 47(8): 990-996.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9