[1]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
Chen Z H. Wrought Magnesium Alloy[M]. Beijing: Chemical Industry Press, 2005.
[2]Sabirov I, Perez-Prado M T, Molina-Aldareguia J M, et al. Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation route[J]. Scripta Materialia, 2011, 64(1): 69-72.
[3]Sheikh H. Role of shear banding on the microtexture of an Al-Mg alloy processed by hot/high strain rate accumulative roll bonding[J]. Scripta Materialia, 2011, 64(6): 556-559.
[4]Utsunomiya H, Hatsuda K, Sakai T, et al. Continuous grain refinement of aluminum strip by conshearing[J]. Materials Science and Engineering: A, 2004, 372(1-2): 199-206.
[5]Habibi A, Ketabchi M, Eskandarzadeh M. Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process[J]. Journal of Materials Processing Technology, 2011, 211(6): 1085-1090.
[6]程永奇. AZ31镁合金板材等径角轧制及冲压性能研究[D]. 长沙: 湖南大学, 2007.
Cheng Y Q. Research on Equal Channel Angular Rolling and Drawability of AZ31 Magnesium Alloy Sheet[D]. Changsha: Hunan University, 2007.
[7]仇治勤. 等径角轧制AM60镁合金板材的显微组织与力学性能[D]. 长沙: 湖南大学, 2008.
Qiu Z Q. Microstructure and Mechanical Properties of AM60 Magnesium Alloy Sheet Processed by Equal Channel Angular Rolling[D]. Changsha: Hunan University, 2008.
[8]Takayama Y, Szpunar J A, Jeong H T. Cube texture development in an Al-Mg-Mn alloy sheet worked by continuous cyclic bending [J]. Materials Transactions, 2001, 42(10): 2050-2058.
[9]Huang J YJiang H, et al. Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J]. Acta Materialia, 2001, 49(9):1497-1505.
[10]Hosokawa H, Chino Y, Shimojima K, et al. Mechanical properties and blow forming of rolled AZ31 Mg alloy sheet[J]. Materials Transactions, 2003, 44(4): 484-489.
[11]詹美燕, 李元元, 陈宛德, 等. 大应变轧制技术制备细晶AZ31镁合金板材[J]. 华南理工大学学报:自然科学版, 2007, 35(8): 16-21.
Zhan M Y, Li Y Y, Chen W D, et al. Preparation of fine grained AZ31 magnesium alloy sheet by large strain rolling technique[J]. Journal of South China University of Technology: Natural Science Edition, 2007, 35(8): 16-21.
[12]蒋伟, 周涛, 宋登辉, 等. AZ31镁合金轧制-剪切-弯曲变形工艺数值模拟研究[J]. 精密成形工程, 2016, 8(5): 121-125.
Jiang W, Zhou T, Song D H, et al. Numerical simulation of rolling-shearing-bending deformation process for AZ31 magnesium alloy[J]. Journal of Netshape Forming Engineering, 2016, 8(5): 121-125.
[13]程永奇, 陈振华, 夏伟军, 等. AZ31镁合金板材等径角轧制变形规律研究[J]. 塑性工程学报, 2007, 14(4): 127-132.
Cheng Y Q, Chen Z H, Xia W J, et al. Study on deformation law of equal channel angular rolling of AZ31 magnesium alloy sheet[J]. Journal of Plasticity Engineering, 2007, 14(4): 127-132.
[14]Lee J C, Seok H K, Suh J Y, et al. Structural evolution of a strip-cast Al alloy sheet processed by continuous equal-channel angular pressing[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 665-673.
[15]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions, 2003, 44(4): 426-435.
[16]Banett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J]. Jounal of Light Metals, 2001,1(3): 167-177.
[17]Alkorta J, Rombouts M, Messemaeker J D, et al. On the impossibility of multi-pass equal-channel angular drawing[J]. Scripta Materialia, 2002, 47(1): 13-18.
[18]张雷, 杨续跃, 霍庆欢, 等. AZ31 镁合金板材低温双向反复弯曲变形及退火过程的组织演化[J]. 金属学报, 2011, 47(8): 990-996.
Zhang L, Yang X Y, Huo Q H, et al. Microstructure evolution of AZ31 magnesium alloy sheet under low temperature bidirectional repeated bending deformation and annealing process[J]. Journal of Metals, 2011, 47(8): 990-996.
|