网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于SIMULINK的阀控液压缸运行稳定性建模与仿真分析
英文标题:Modeling and simulation analysis on operation stability of valve controlled hydraulic cylinder based on SIMULINK
作者:韩晨升 温少飞 赖成 
单位:山西交通职业技术学院 巨龙钢管有限公司 太原理工大学 
关键词:阀控液压缸 液压系统 动态特性 稳态特性 频率特性 MATLAB/SIMULINK 
分类号:TP39
出版年,卷(期):页码:2017,42(1):82-85
摘要:

在分析阀控液压缸系统工作原理的基础上,应用流量和力平衡方程,建立了锻压机构工作过程中阀控三位四通单活塞液压缸系统的数学模型,在MATLAB/SIMULINK计算机软件平台上进行了仿真计算,分析系统的稳态特性、动态特性以及频率特性。结果表明:三位四通阀控液压缸在运行过程中出现振荡和超调,并且随着时间的推移系统处于稳定状态,稳态误差为0,系统的响应速度较快,上升时间约为0.4 s,调节时间约为0.55 s,相位裕度约为86.7°,幅值裕度约为29.2 dB,为系统结构参数的优化提供了必要的理论依据;冲击末速度约为6.22 m·s-1,回程最大速度为1.13 m·s-1,增加了阀控液压缸对活塞伸出的助推作用和对回缩的缓冲作用。

Based on the analysis of valve-controlled hydraulic cylinder system, a mathematical model of single piston hydraulic cylinder (three position and four-way) system in the forging was established by flow and force balance equation and  simulated by the MATLAB/SIMULINK software platform, and the stability characteristics, dynamic characteristics and frequency characteristics of the system were analyzed accordingly. The results show that the oscillation and overshoot of valve-controlled hydraulic cylinder appear in the running process, and the system is in stable state as time goes on. Therefore, the steady-state error is zero, and the system response speed is faster with the passing time about 0.4 s, adjusting time about 0.55 s, phase margin about 86.7 ° and amplitude margin about 29.2 dB to provide a necessary theoretical basis for the optimization of system structure parameters. Thus, the pushing effect of valve-controlled hydraulic cylinder on piston extension and the cushioning effect on piston retraction are improved by the valve-controlled hydraulic cylinder with the impact end speed at 6.22 m·s-1 and the return maximum speed at 1.13 m·s-1.

基金项目:
山西省自然科学基金资助项目(20140321014-02)
作者简介:
韩晨升(1971-),男,硕士,讲师 E-mail:wswang222@126.com
参考文献:
[1]袁立鹏,赵克定,李海金. 阀控液压缸统一流量方程的分析研究[J]. 机床与液压,200512(8)97-99.

Yuan L P, Zhao K D, Li H J. Theory analysis of the general valve controlled hydraulic flow equation[J]. Machine Took & Hydraulics, 2005,12(8):97-99.

[2]徐华超,顾道达. 基于AMESim的快速支护装备液压系统仿真研究[J]. 煤炭技术,201534(2)250-251.

Xu H C, Gu D D. Simulation research on rapid supporting equipment hydraulic system based on AMESim[J]. Coal Technology, 2015, 34(2): 250-251.

[3]马晓宏,陈冰冰,甘学辉. 电液比例阀控缸位置控制系统的建模与仿真研究[J]. 机械设计与制造,200813(4)43-45.

Ma X H, Chen B B, Gan X H. The modeling and simulation of electro-hydraulic proportional valve-controlled cylinder position servo system[J]. Machinery Design & Manufacture, 2008,13(4)43-45.

[4]江桂云,王勇勤,严兴春. 液压伺服阀控缸动态特性数学建模及仿真分析[J].四川大学学报:工程科学版,200840(5)195-198.

Jiang G Y, Wang Y Q, Yan X C. Mathematics modeling and simulation analysis of dynamic characteristics for hydraulic cylinder controlled by servo-valve[J]. Journal of Sichuan University:Engneering Science Edition,2008,40(5):195-198.

[5]谭琛,宋伟奇,冯美英. 基于AMEsim的压力机锁紧回路仿真与试验研究[J]. 锻压技术,2016, 41(7): 72-78.

Tan C, Song W Q, Feng M Y. Simulation and experiment study on locking circuit for press machine based on AMEsim[J]. Forging & Stamping Technology, 2016, 41(7):72-78.

[6]苗玉刚,赵峰. 一种新型旋转直线组合式液压缸设计[J]. 组合机床与自动化加工技术,201422(10)116-118123.

Miao Y G, Zhao F. Design of a new rotary motion and linear motion combined hydraulic cylinder[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2014, 22(10):116-118,123.

[7]李辉,柯坚,刘晓红. 基于CFD的液压锥阀结构特性分析[J]. 流体机械,200937(9)33-36.

Li H, Ke J, Liu X H. Analysis of structure characteristics of a hydraulic poppet valve based on CFD[J]. Fluid Machinery,2009,37(9):33-36.

[8]王晓宇,梁宏宝. 多腔液压缸新型液压抽油机的设计[J]. 液压与气动,201521(8)87-90.

Wang X Y, Liang H B. Design of hydraulic pumping unit with multi-cavity cylinder[J]. Chinese Hydraulics & Pneumatics, 2015,21(8):87-90.

[9]李俊文. 阀控液压缸机构的负载压力和流量[J]. 机械工程与自动化,200633(2)152-153.

Li J W. Study on load pressure and flow capacity of hydro-cylinder mechanics controlled by hydro-valve[J].Mechanical Engineering & Automation,2006,33(2):152-153.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9