[1]熊云龙, 娄延春, 刘新峰. 不锈钢材料研究的新进展[J]. 热加工工艺, 2005,34(5): 51-53.
Xiong Y L, Lou Y C, Liu X F. The new progress in research of stainless steel[J]. Hot Working Technology, 2005,34(5): 51-53.
[2]浦江, 陈挺, 王步美,等. 奥氏体不锈钢应变强化过程中化学元素对马氏体转变的影响[J]. 气体分离, 2012, (4): 36-41.
Pu J, Chen T, Wang B M, et al. The effect of chemical elements on martensite transformation in austenitic stainless steel strain hardening [J]. Gas Separation, 2012, (4): 36-41.
[3]Papula S, Talonen J. Effect of residual stress and strain-induced α′-martensiteon delayed cracking of metastable austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2014,45A: 1238-1246.
[4]Andrade, Gome M S, Vilela O A, et al. Formability evaluation of two austenitic stainless steels[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2004, 26(1): 47-50.
[5]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010,Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S].
[6]Papula STodoshchenko O, et al. Effect of internal hydrogen on delayed cracking of metastable low-nickel austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2014, 45(11):951-961.
[7]ASTM E 8M-04, Standard test methods for tension testing of metallic materials [metric][S].
[8]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999.
Xu Z Y. The Martensitic Transformation and Martensite[M]. Beijing: Science Press, 1999.
[9]Tomita Y, Lwmoto T. Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties[J]. International Journal of Mechanical Science, 1995, 37(12): 1295-1305.
[10]韩豫, 陈学冬, 刘全坤. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 87-92.
Han Y, Chen X D, Liu Q K. Study on technique and properties of cold stretching for austenitic stainless steels[J]. Journal of Mechanical Engineering, 2012, 48(2): 87-92.
[11]Spencer K, Conlon K T, Br
|