网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
201不锈钢形变诱发马氏体相变特性
英文标题:Research on the properties of transformation induced by martensite deformation of stainless steel 201
作者:张豪 夏琴香 方铭 周驰 
单位:华南理工大学 广东凌丰集团股份有限公司 
关键词:201不锈钢 单向拉伸试验 马氏体相变 变形温度 应变速率 时效开裂 
分类号:TG141
出版年,卷(期):页码:2017,42(1):105-111
摘要:

201不锈钢塑性变形过程中会发生马氏体相变,相变改变了材料力学性能,使201不锈钢拉深成形后易产生时效开裂现象。为探明201不锈钢因马氏体相变导致的时效开裂原因,通过单向拉伸试验,研究了201不锈钢马氏体相变特性、温度和应变速率对马氏体相变的影响规律。结果表明:马氏体相变量随拉伸变形量的增加而增加;增加变形温度与应变速率,均会抑制马氏体相变;当温度达到100 ℃时,不再有相变发生;在同一温度下,随应变速率的增大,屈服强度和屈强比均增大,伸长率减小;但因马氏体相变,201不锈钢在50 ℃以下和100 ℃以上的抗拉强度表现出相反的变化规律;在不同温度下,201不锈钢在应变速率为0.001 s-1时的塑性变形能力最好。

Martensitic transformation occurs during the plastic deformation of stainless steel 201, changes the mechanical properties of material and leads stainless steel 201 to become aging  cracking after deep drawing. In order to find out the reason of aging cracking induced by martensitic transformation for stainless steel 201, the influences of martensitic transformation characteristics, temperature and strain rate on martensitic transformation were mainly studied by uniaxial tensile test. The results show that martensitic transformation increases with the increase of strain, and the increase of deformation temperature and strain rate suppress the martensitic transformation. When the deformation temperature is up to 100 ℃, there will be no longer martensitic transformation. At the same temperature, the yield strength and yield ratio increase, while the elongation decreases with the increase of strain rate. Due to martensitic transformation, the material tensile strength shows an opposite variation below 50 ℃and above 100 ℃. Therefore, the best plasticity of stainless steel 201  is at the strain rate of 0.001 s-1 at different temperatures.
 

基金项目:
国家自然科学基金资助项目(51375172);广东省自然科学基金资助项目(2016A030313519)
作者简介:
张豪(1991-),男,硕士研究生 E-mail:460278249@qq.com 通讯作者: 夏琴香(1964-),女,博士,教授 E-mail:meqxxia@scut.edu.cn
参考文献:
[1]熊云龙, 娄延春, 刘新峰. 不锈钢材料研究的新进展[J]. 热加工工艺, 2005,34(5): 51-53.

Xiong Y L, Lou Y C, Liu X F. The new progress in research of stainless steel[J]. Hot Working Technology, 2005,34(5): 51-53.

[2]浦江, 陈挺, 王步美,等. 奥氏体不锈钢应变强化过程中化学元素对马氏体转变的影响[J]. 气体分离, 2012, (4): 36-41.

Pu J, Chen T, Wang B M, et al. The effect of chemical elements on martensite transformation in austenitic stainless steel strain hardening [J]. Gas Separation, 2012, (4): 36-41.

[3]Papula S, Talonen J. Effect of residual stress and strain-induced α′-martensiteon delayed cracking of metastable austenitic stainless steels [J]. Metallurgical and Materials Transactions A, 2014,45A: 1238-1246.

[4]Andrade, Gome M S, Vilela O A, et al. Formability evaluation of two austenitic stainless steels[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2004, 26(1): 47-50.

[5]GB/T 228.12010,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.12010Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S].

[6]Papula STodoshchenko O, et al. Effect of internal hydrogen on delayed cracking of metastable low-nickel austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2014, 45(11):951-961.

[7]ASTM E 8M-04 Standard test methods for tension testing of metallic materials [metric][S].

[8]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1999.

Xu Z Y. The Martensitic Transformation and Martensite[M]. Beijing: Science Press, 1999.

[9]Tomita Y, Lwmoto T. Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties[J]. International Journal of Mechanical Science, 1995, 37(12): 1295-1305.

[10]韩豫, 陈学冬, 刘全坤. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 87-92.

Han Y, Chen X D, Liu Q K. Study on technique and properties of cold stretching for austenitic stainless steels[J]. Journal of Mechanical Engineering, 2012, 48(2): 87-92.

[11]Spencer K, Conlon K T, Br
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9