网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于热拉伸试验的DP590高强钢变形本构关系及热加工图
英文标题:Constitutive relationship and hot processing pattern of high-strength steel DP590 based on hot tensile test
作者:邱霖 唐建敏 刘洪光 
单位:重庆科创职业学院 重庆电子工程职业学院 
关键词:DP590高强钢 热成形 流动应力 本构关系 热加工图 
分类号:TG146.2
出版年,卷(期):页码:2017,42(1):121-125
摘要:

在变形温度为1123~1423 K和应变速率为0.01~10 s-1条件下,对DP590高强钢进行高温热拉伸试验,得到其真应力-真应变曲线,分析了温度和应变速率对DP590高强钢热变形时流动应力的影响。结果表明,当应变量一定时,流动应力随应变速率的升高和温度的降低而增大。基于热拉伸试验数据,通过线性回归分别确定了在峰值应力下DP590高强钢的高温材料常数:应变硬化指数n=3.194,热变形激活能Q=508.29 kJ·mol-1,α=0.0153和A=2.126×1017 s-1。构建了DP590高强钢的Arrhenius双曲正弦本构关系,与试验值相比,模型的最大误差为7.8%,最小误差为0.18%。根据DMM动态材料模型建立了DP590高强钢在应变为0.3条件下的热加工图,确定了DP590高强钢的适宜热成形区为:应变速率为0.01~0.1 s-1,变形温度为1250~1375 K。

The isothermal tensile tests of high-strength steel DP590 were carried out at temperature ranges of 1123-1423 K and strain rates of 0.01-10 s-1. Then, the true stress-strain curves were plotted to analyze the effects of temperature and strain rate on the flow behavior of thermal deformation for high-strength steel DP590. The results show that the flow stress increases with decreasing of temperature and increasing of strain rate. Based on the isothermal tensile test data, the high temperature material constants are obtained through multiple linear regression analysis with the strain hardening coefficient n=3.194, thermal activation energy   Q=508.29 kJ·mol-1, α=0.0153 and A=2.126×1017 s-1. Therefore, the hyperbolic sine Arrhenius constitutive model for high-strength steel DP590 was established. Compared with the experimental results, the maximum error is 7.8%, and the minimum error is 0.18%. Based on the dynamic material model (DMM), the hot processing map of high-strength steel DP590 under the strain of 0.3 was constructed, and the suitable hot deformation range of high-strength steel DP590 is determined as the strain rates of 0.01-0.1 s-1 and the deformation temperate of 1250-1375 K.

基金项目:
重庆市教委2015年度科学技术研究项目(KJ1505301)
作者简介:
邱霖(1973-),男,硕士,讲师 E-mail:871284343@qq.com
参考文献:
[1]谢磊磊, 唐荻, 江海涛, . 汽车用先进高强钢的成形性能[J]. 塑性工程学报, 2013, 20(1):84-88.

Xie L L, Tang D, Jiang H T, et al. Study on formability of advanced strength steel for automobiles [J]. Journal of Plasticity Engineering, 2013, 20(1):84-88.

[2]李国城, 邓涛, 卢任之. 超高强度钢板热流变行为试验研究及本构模型仿真分析[J]. 锻压技术, 2016, 41(3):110-115.

Li G C, Deng T, Lu R Z. Experimental research on hot deformation behavior of ultra high strength steel and simulation analysis of the constitutive relationship[J]. Forging & Stamping Technology, 2016, 41(3):110-115.

[3]李扬, 刘汉武, 杜云慧, . 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报, 2011, 25(7):101-104, 109.

Li Y, Liu H W, Du Y H, et al. Applications and developments of AHSS in automobile industry [J]. Materials Review, 2011, 25(7):101-104, 109.

[4]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4):1733-1759.

[5]李立新,周志峰,张涛,. DB685钢的热变形行为及热加工图[J]. 锻压技术,2016, 419: 126-129.

Li L X, Zhou Z F, Zhang T, et al. Hot deformation behavior and processing map for DB685 steel [J]. Forging & Stamping Technology, 2016, 419: 126-129.

[6]李汉, 周旭东, 高全德, . 铸态 27SiMn 钢热成形本构方程的建立[J]. 铸造技术, 2014, 35(4):679-682.

Li H, Zhou X D, Gao Q D, et al. Establishment of constitutive equations of as-cast 27SiMn steel during hot forming [J].Foundry Technology, 2014, 35(4):679-682.

[7]Zener C, Hollomon H. Effect of strain-rate upon the plastic flow of steel [J]. Journal of Applied Physics,1944,15(1):22-27.

[8]Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys [J]. Materials Science and Engineering A, 1998, 243: 82-88.

[9]Quan G Z, Wang Y, Yu C T, et al. Hot workability characteristics of as-cast titanium alloy Ti-6Al-2Zr-1Mo-1V: A study using processing map [J]. Material Science & Engineering A, 2013, 564:46-56.

[10]Prasad Y V R K. Modeling of hot deformation for microstructural control [J]. International Materials Reviews, 1998, 43:243-258.

[11]Prasad Y V R K, Rao K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability [J]. Material Science & Engineering A, 2008, 487:316-327.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管 北京机电研究所有限公司 中国机械工程学会塑性工程分会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-62920652 +86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备09032115号-5