网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元的发动机连杆衬套温挤压工艺参数优化
英文标题:Optimization on warm extrusion process parameters for engine connecting rod bushing based on finite element
作者:杨华龙 樊文欣 曹存存 操文胜 胡新超 佘勇 
单位:中北大学 
关键词:发动机连杆 连杆衬套 温挤压 锡青铜 正交优化 有限元 
分类号:TG376
出版年,卷(期):页码:2017,42(2):172-177
摘要:
以锡青铜连杆衬套为研究对象,通过Deform-3D软件进行了数值模拟。利用单一因素工艺参数试验法和正交试验优化试验方法对发动机连杆衬套的温挤压过程进行了数值模拟分析,得到了摩擦因数、温挤压速度、温挤压温度等参数在温挤压过程中对挤压力、损伤值的影响规律和显著性影响。利用极差分析得到了两组最优的温挤压工艺参数,并通过数值模拟两组较优解对挤压力、损伤值的影响规律的对比,最终得到一组最优解,即摩擦因数为0.1、温挤压速度为5 mm·s-1、温挤压温度为700 ℃。根据连杆衬套温挤压试验验证了使用优化后的工艺参数能够制造出表面质量高的成形件。
For tin bronze connecting road bushing, the numerical simulation for the forming process was carried out by Deform-3D software. By means of single factor test method and orthogonal test method, the warm extrusion process of engine connecting rod bushing was simulated and analyzed. Then, the influence regulations of friction factor, warm extrusion speed and warm extrusion temperature on the extrusion force and damage value were obtained. Furthermore, two groups of optimum process parameters of warm extrusion were obtained by range analysis. Comparing with the influence regulations of two groups of optimized solution on the extrusion force and damage value, a set of optimal solution was obtained with friction coefficient of 0.1, warm extrusion speed of 5 mm·s-1 and warm extrusion temperature of 700 ℃. According to the warm extrusion experiment of connecting rod bushing, the surface quality of formed parts manufactured by the optimized process parameters was verified. 
基金项目:
山西省自然科学基金资助项目(2012011023-2);山西省高校高新技术产业化项目(20120021)
作者简介:
杨华龙(1989-),男,硕士研究生 樊文欣(1964-),男,博士,教授
参考文献:


[1]Zhao P F, Zhou Y J, Song K X, et al. Microstructure and properties of wear-resisting Cu-Sn-Pb-Ni alloy prepared by canning extrusion process[J]. Journal of Plasticity Engineering, 2012, 19 (3): 8-12.
[2]王志伟, 樊文欣, 冯志刚,等. 基于正交试验的连杆衬套力学性能研究[J]. 热加工工艺, 2014,43(3):104-106.Wang Z W, Fan W X, Feng Z G, et al. Study on mechanical properties of connecting rod bushing based on orthogonal test [J]. Hot Working Technology, 2014,43(3): 104-106.
[3]赵震, 陈军, 吴公明.冷温热挤压技术[M].北京:电子工业出版社, 2008.Zhao Z, Chen J, Wu G M. Cold and Warm Extrusion Technology [M]. Beijing: Electronic Industry Press, 2008.
[4]孙德河, 王丽薇, 解文科. AZ31B镁合金薄板挤压成形模拟分析[J]. 锻压技术, 2016, 41(1):61-66.Sun D H, Wang L W, Xie W K. Simulation analysis on thin sheet of magnesium alloy AZ31B in the extrusion process [J]. Forging & Stamping Technology, 2016, 41(1):61-66.
[5]蔡康乐, 高志刚, 朱乾科,等. 挤压Mg-(8,11)Al-Mn-Y-Gd-La合金的显微组织和力学性能[J]. 稀有金属材料与工程, 2015,44(6):1489-1493. Cai K L, Gao Z G, Zhu Q K, et al. Microstructure and mechanical properties of extruded Mg-(8,11)Al-Mn-Y-Gd-La alloys [J]. Rare Metal Materials and Engineering, 2015,44(6):1489-1493.
[6]姚彭彭, 李萍, 李成铭,等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属, 2015,39(11):967-974.Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field [J]. Chinese Journal of Rare Metals, 2015,39(11):967-974.
[7]肖寒, 陈泽邦, 胡海莲,等. 半固态铜合金单向压缩变形本构模型研究[J]. 材料导报, 2016, 30(20):142-146.Xiao H, Chen Z B, Hu H L, et al. Constitutive models of semi-solid copper alloy billet during uniaxial compression [J]. Materials Review, 2016, 30(20): 142-146.
[8]丁永泉. 室温静液挤压Mg-12Gd-3Y-0.5Zr合金组织及力学性能研究[D]. 南京:南京理工大学, 2008.Ding Y Q. Study on Microstructure and Mechanical Properties of Mg-12Gd-3Y-0.5Zr Alloy by Room Temperature Hydrostatic Extrusion [D]. Nanjing: Nanjing University of Science and Technology,2008.
[9]张春雨,李子夫,陈贤帅. 挤压速度对某铝合金筒体支架等温挤压成形的影响[J]. 热加工工艺, 2013, 42(9):138-139.Zhang C Y, Li Z F, Chen X S.Effects of extrusion speed on isothermal extrusion forming for Al-alloy cylinder holder [J]. Hot Working Technology, 2013, 42 (9): 138-139.
[10]温景林, 丁桦, 曹富荣,等.有色金属挤压与拉拔技术[M].北京:化学工业出版社,2007.Wen J L, Ding H, Cao F R, et al. Nonferrous Metal Extrusion and Drawing Technology [M]. Beijing: Chemical Industry Press, 2007.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9