网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Ti-6Al-4V钛合金型材电热拉弯成形极限仿真方法
英文标题:FEM of forming limit in electric-thermal stretch bending for Ti-6Al-4V titanium alloy profile
作者:刘天骄 王永军 杨凯 田鹤飞 孔文超 
单位:昆明船舶设备研究试验中心 西北工业大学 
关键词:Ti-6Al-4V钛合金 电热拉弯 成形极限 断裂预测 预拉伸 补拉伸 数值模拟 
分类号:V262.3; TG386.4
出版年,卷(期):页码:2017,42(4):117-122
摘要:

针对电加热拉弯成形工艺,建立了电热拉弯过程顺序耦合的数值模拟方法,实现了电热转台式拉弯成形过程的多工序、多场耦合数值模拟。并选用动力显式热-力耦合分析算法,基于J-C断裂准则,建立了电热拉弯成形极限与断裂预测的三维实体模型。通过Ti-6Al-4V钛合金挤压T型材电热拉弯成形试验与仿真预测结果比较发现:电热拉弯成形过程中,材料的失效主要发生在预拉伸和补拉伸阶段,失效原因为拉伸力过大;电热拉弯成形极限的主要影响因素包括加热温度或电流密度、预拉力、补拉伸过程温度或冷却时间和补拉力;预拉伸和补拉伸极限应力的预测相对误差分别为19.7%和19.1%,验证了模型的有效性。

For the electric-thermal stretch bending of titanium alloy, a numerical simulation method of sequential coupling of electro-thermal stretch bending process was established, and a multi-process and multi-field coupling numerical simulation process of electro-thermal stretch bending with turntable was realized. Then, the dynamic explicit thermal-mechanical coupling analysis algorithm was selected based on J-C fracture criteria, and a 3D model predicting the forming limit and fracture  of electro-thermal stretch bending was built. Comparing the experimental result with simulation result of extrusion T-type profile for Ti-6Al-4V titanium alloy, it is found that the failure of material in the electric-thermal stretch bending process is mainly because of the excessive tensile force on the pre-stretching and post-stretching stages. Therefore, the main factors influencing on the forming limit of electric-thermal stretch bending are the heating temperature or current density, the pre-stretching force, the temperature or cooling time of the post-stretching process and the post-stretching force. Furthermore, the predicted relative errors of limit stress for  the pre-stretching and post-tensioning are 19.7% and 19.1% respectively, and the effectiveness of model is verified.
 

基金项目:
国家自然科学基金资助项目(51275420);航空科学基金资助项目(2008ZE53037)
作者简介:
刘天骄(1988-),男,博士,工程师 E-mail:nwpuliutianjiao@163.com
参考文献:

[1]Ambrogio G, Filice L, Gagliardi F. Formability of lightweight alloys by hot incremental sheet forming[J]. Materials & Design, 2012, 34: 501-508.


[2]Jia W, Zeng W, Han Y, et al. Prediction of flow stress in isothermal compression of Ti60 alloy using an adaptive network-based fuzzy inference system[J]. Materials & Design, 2011, 32(10): 4676-4683.


[3]Moffat M, Romilly P. Breakthrough technologies in aerospace industry for titanium processing[A]. Titanium Europe 2014 Conference[C]. Sorrento, Italy: International Titanium Association, 2014.


[4]吴静明, 王永军, 刘天骄, . 铝合金型材拉弯有限元模拟[J]. 锻压技术, 2015, 40(4): 54-59.


Wu J M, Wang Y J, Liu T J, et al. Finite element simulation of stretch bending on aluminum alloy extrusions[J]. Forging & Stamping Technology, 2015, 40(4): 54-59.


[5]韩宝成, 应家骊. 钛合金电阻加热成形工艺[J]. 航空工艺技术, 1981,9: 7-8.


Han B C, Ying J L. Research on resistance electrical heating forming of titanium alloy[J]. Aeronautical Manufacturing Technology, 1981, 9: 7-8.


[6]王玉庭. 钛合金电阻加热拉弯成形工艺研究[J]. 宇航材料工艺, 1986, (2): 6-9.


Wang Y T. Research on resistance electrical heating stretch bending process of titanium alloy [J]. Aerospace Material & Technology, 1986, (2): 6-9.


[7]Deng T S, Li D S, Li X Q, et al. Material characterization, constitutive modeling and validation in hot stretch bending of Ti-6Al-4V profile[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 230(3): 505-516.


[8]Deng T S, Li D S, Li X Q, et al. Hot stretch bending and creep forming of titanium alloy profile[J]. Procedia Engineering, 2014, 81: 1792-1798.


[9]邓同生, 李东升, 李小强. 型材热拉弯蠕变复合成形工艺技术及装备[J]. 塑性工程学报, 2012, 19(5): 43-48.


Deng T S, Li D S, Li X Q. Technology and equipment for compound forming process of profile hot stretch-bending and creep[J]. Journal of Plasticity Engineering, 2012, 19(5): 43-48.


[10]杨亚文. 钛型材热拉弯蠕变成形电参数的计算[J]. 沈阳航空工业学院学报, 2002, 19(4): 10-12.


Yang Y W. Computation of electrical parameter of hot stretch bending and creep forming of section titanium [J]. Journal of Shenyang Institute of Aeronautical Engineering, 2002, 19(4): 10-12.


[11]孙宝龙, 王永军, 刘宝胜, . 钛合金挤压型材自阻电加热拉弯成形工装设计[J]. 模具工业, 2014, 40(12): 40-43.


Sun B L, Wang Y J, Liu B S, et al. Tooling design of resistance electrical heating stretch bending forming for titanium alloy extrusion profile[J]. Die & Mould Industry, 2014, 40(12): 40-43.


[12]杨凯. TC4钛合金T型材电热拉弯成形技术研究[D]. 西安: 西北工业大学, 2016.


Yang K. Research on Electric Resistance Heating Stretch-Bending Forming for Ti-6Al-4V Alloy Profile with T-Section[D]. Xian: Northwestern Polytechnical University, 2016.


[13]Nied H. The finite element modeling of the resistance spot welding process[J]. Welding Journal,1984, 63(4): 123-132.


[14]akrcal M, Klaslan C, Güden M, et al. Cross wedge rolling of a Ti-6Al-4V alloy: The experimental studies and the finite element simulation of the deformation and failure[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(9): 1273-1287.


 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9