网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
2A12硬铝合金热拉伸流变行为及本构建模
英文标题:Hot tensile flow behavior and constitutive model of aluminum alloy 2A12
作者:李先梦 湛利华 申儒林 郭亮 
单位:中南大学 
关键词:2A12硬铝合金 峰值应力 断裂总伸长率 均匀伸长率 本构模型 
分类号:TG146.2
出版年,卷(期):页码:2017,42(4):159-164
摘要:

在变形温度350~500 ℃、应变速率0.01~1 s-1条件下,利用Gleeble-3500热模拟实验机对2A12硬铝合金板进行热拉伸实验。结果表明:峰值应力随温度升高而减小,随应变速率提高而增大;随着应变速率减小,断裂总伸长率升高,而均匀伸长率降低;应变速率较低时,其断裂总伸长率在350~450 ℃时较高,升高到500 ℃时迅速降低,均匀伸长率则对温度变化不敏感;应变速率较高时,试样断裂总伸长率对温度变化不敏感,均匀伸长率随温度升高而降低。根据实验结果,采用Z参数建立的流变应力本构模型,能较好地描述2A12铝合金板材热拉伸变形下的流变行为。

 

Under the condition of deformation temperature of 350-500 ℃ and strain rate of 0.01-1 s-1,the hot tensile test of 2A12 aluminum alloy sheet was carried out by Gleeble-3500 thermal simulation machine. The results show that the peak stress decreases with the increase of deformation temperature and increases with the increase of strain rate. However, with the decrease of strain rate, the total elongation of fracture increases, but the uniform elongation decreases. Furthermore, when the strain rate is low, the total elongation of fracture is higher at 350-500 ℃,then declines rapidly at 500 ℃, but the uniform elongation of fracture is not sensitive to temperature change. When the strain rate is high, the total elongation of fracture is not sensitive to temperature change, and the uniform elongation decreases with the increase of temperature. According to the experimental results,a flow stress constitutive model using Z parameter is established,and the flow behavior of 2A12 aluminum alloy sheet under hot tensile deformation can be better represented.

基金项目:
国家自然科学基金资助项目(51235010);湖南省自然科学基金资助项目(13JJ2009);中南大学“创新驱动计划”项目(2015CX002);高等学校博士学科点专项科研基金(20120162110003)
作者简介:
李先梦(1991-),男,硕士研究生 E-mail:lxm410922@qq.com 通讯作者:湛利华(1976-),女,博士,教授 E-mail:yjs-cast@csu.edu.cn
参考文献:

[1]刘春燕, 邱义伦, 王斌. 2A12铝合金热处理工艺研究[J]. 热处理, 2008, 23 (5): 59-61.


Liu C Y, Qiu Y L, Wang B. Heat treatment of process for 2A12 aluminum alloy[J]. Heat Treatment, 2008, 23 (5):59-61.


[2]赵飞. 2A12铝合金时效成形的微观组织及力学性能[D]. 大连: 大连理工大学, 2010.


Zhao F. Microstructures and Mechanical Properties of 2A12 Aluminum Alloy after Age Forming[D]. Dalian: Dalian University of Technology, 2010.


[3]Alistair F, Travor A Dean, Lin J G. Process for forming aluminum alloy sheet components: United States of America, US2012/0152416Al[P]. 2012-6-21.


[4]李春雷. 2A12 铝合金本构关系实验研究[D]. 哈尔滨: 哈尔滨工业大学复合材料与结构研究所, 2008.


Li C L. Experimental Investigation into the Constitutive Relationship of 2A12 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology, Center for Composite Materials and Structure, 2008.


[5]Wang Z T, Tian R Z. Aluminum Alloys and Manual of Its Manu-facture[M]. Changsha: Central South University Press, 2005.


[6]李立新,周志峰,张涛,等. DB685钢的热变形行为及热加工图[J]. 锻压技术, 2016, 41(9): 126-129.


Li L X, Zhou Z F, Zhang T, et al. Heat deformation behavior and heat processing map of steel DB685[J]. Forging & Stamping Technology, 2016, 41(9): 126-129.


[7]李雪松, 陈军, 张鸿. 6082铝合金的热变形本构模型[J]. 中国有色金属学报, 2008, 18(10): 1769-1774


Li X S, Chen J, Zhang H. Constitutive model for hot deformation of 6082 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1769-1774.


[8]丁贤飞, 张利欣, 孙冬柏, . 6005A6082铝合金热变形流变行为[J]. 北京科技大学学报, 2012, 34(9): 1041-1047.


Ding X F, Zhang L X, Sun D B, et al. Flow behavior of 6005A and 6082 aluminum alloy during hot deformation [J]. Journal of University of Science and Technology Beijing, 2012, 34(9): 1041-1047.


[9]Mcqueen H J, Fry E, Belling J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7 Mn (AA5083)[J]. Journal of Materials Engineering and Performance, 2001, 10(2): 164-172.


[10]李俊鹏, 沈健, 许小静, . 7050高强铝合金高温塑性变形的流变应力研究[J]. 稀有金属, 2009, 33(3): 318-322.


Li J P, Shen J, Xu X J, et al. Flow stress of 7050 high strength aluminum alloy during high temperature plastic deformation[J]. Chinese Journal of Rare Metals, 2009, 33(3): 318-322.


[11] 李慧中, 梁霄鹏, 张新明, . 2519铝合金热变形流变行为[J].中国有色金属学报, 2005, 15(4): 621-625.


Li H Z, Liang X P, Zhang X M, et al. Hot deformation behavior of 2519 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(4): 621-625.


[12] 高为国. 机械工程材料[M]. 长沙: 中南大学出版社, 2011.


Gao W G. Mechanical Engineering Material[M]. Changsha: Central South University Press, 2011.


[13]李光瀛,周积智. 新一代高强塑性钢的开发与应用[J]. 轧钢, 2011, 28(1): 1-10.


Li G Y, Zhou J Z. Development and application of a new generation high strength-plasticity steels[J]. Steel Rolling, 2011, 28(1): 1-10.


[14]杨扬, 高雪峰, 姜丽红, . 应变速率对AA1050纯铝微观组织的影响[J]. 粉末冶金材料科学与工程, 2015, 20(6): 937-943.


Yang Y, Gao X F, Jiang L H, et al. Effect of strain rate on microstructure of AA1050 pure aluminum[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 937-943.


[15]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944, 15(1): 22-32.


[16]Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science & Technology, 1997, 13(3): 210-216.


[17]Jonas J J, Sellars C M, Tegart W M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.


[18]赵俊. 铝合金热拉伸流变行为及U型件热冲压工艺研究[D]. 长沙: 中南大学, 2015.


Zhao J. Research on Flow Behavior of AA6061 during Hot Tensile Test and Hot Stamping Process for U-shape Parts[D]. Changsha: Central South University, 2015.


[19]张辉, 伍豪杰, 蒋福林. 4045铝合金热变形行为及其加工图[J]. 湖南大学学报, 2013, 40(8): 83-89.


Zhang H, Wu H J, Jiang F L. Hot deformation behavior and processing map of 4045 aluminum alloy[J]. Journal of Hunan University, 2013, 40(8): 83-89.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9