网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
矩形截面锻件的径向锻造力与展宽
英文标题:Radial forging force and spread for rectangular cross-sectional forging
作者:杨箫 董湘怀 周亚宁 刘强 
单位:上海交通大学 兰州兰石能源装备工程研究院有限公司 
关键词:矩形截面锻件 径向锻造 锻造力 展宽 回归正交试验 压下率 送进率 
分类号:TG316.3
出版年,卷(期):页码:2017,42(5):1-7
摘要:

首先针对矩形截面锻件径向锻造工艺进行了试验研究,并采用有限元法进行了三维数值模拟,不同压下率条件下模拟与试验所得的锻造力误差不超过5%,表明有限元模型是合理的。采用有限元模拟方法,分析了压下率和送进率等参数对径向锻造力与坯料展宽的影响规律。采用回归正交试验方法,将无量纲化的工艺参数对径向锻造力与坯料展宽的影响规律拟合为二次多项式,拟合结果与有限元模拟结果的误差不超过6%,表明拟合公式是合理的。这些拟合公式可用于矩形截面锻件径向锻造工艺的设计和优化。

Radial forging experiments of rectangular cross-sectional forging were implemented, and three-dimensional simulation of radial forging process was carried out by finite element (FE) method. However, the deviation between the predicted and measured forging forces under different compression ratio is less than 5%, which shows the reasonableness of the FE model. Then, the influences of radial forging parameters, such as compression ratio and feed ratio, on forging forces and lateral spread were analyzed by the FE simulation. Finally, the relationships of the non-dimensionalized radial forging parameters with forging forces and lateral spread were fitted to quadratic polynomials by the regression orthogonal test method. The deviation between the fitted and simulated results is less than 6%, which shows the rationality of the fitted quadratic polynomials. The fitted quadratic polynomials were used to research on design and optimization of the radial forging process further.

基金项目:
国家自然科学基金资助项目(51275297)
作者简介:
杨箫(1992-),女,硕士研究生 董湘怀(1955-),男,博士,教授
参考文献:


[1]Wallner S, Harrer O, Buchmayr B, et al. Manufacturing of precision forgings by radial forging[J]. AIP Conference Proceedings, 2011, 1315(1): 315-320.
[2]Hsiang S H, Ho H L. Investigation of the influence of various process parameters on the radial forging processes by the finite element method (FEM)[J]. The International Journal of Advanced Manufacturing Technology, 2004, 23(9): 627-635.
[3]Domblesky J P, Shivpuri R, Painter B. Application of the finite-element method to the radial forging of large diameter tubes[J]. Journal of Materials Processing Technology, 1995, 49(1): 57-74.
[4]董节功, 周旭东, 朱锦洪, 等. 径向锻造三维成形锻透性的数值模拟[J]. 机械工程材料, 2007, 31(3): 76-78.Dong J G, Zhou X D, Zhu J H, et al. FEM simulation of forging penetration efficiency of radial forging in 3D[J].Materials for Mechanical Engineering, 2007, 31(3):76-78.
[5]栾谦聪, 董湘怀, 吴云剑. 基于经验法则的锻透深度计算公式推导与验证[J]. 模具技术, 2013, (3): 1-6.Luan Q C, Dong X H, Wu Y J. The derivation and validation of a formula calculating the forging penetration efficiency (FPE) based on empirical method [J]. Die & Mould Technology, 2013, (3): 1-6.
[6]樊黎霞, 刘力力, 刘庆东, 等. 身管线膛精锻加工过程的数值分析[J]. 兵工学报, 2009,30(8): 1098-1102.Fan L X, Liu L L, Liu Q D, et al. The numerical simulation of the precision radial forging processing of the gun barrel [J]. Acta Armamentarii,2009,30(8):1098-1102.
[7]Sanjari M, Taheri A K, Movahedi M. An optimization method for radial forging process using ANN and Taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(7-8): 776-784.
[8]Sanjari M, Saidi P, Taheri A K, et al. Determination of strain field and heterogeneity in radial forging of tube using finite element method and microhardness test[J]. Materials & Design, 2012, 38: 147-153.
[9]Chen J, Chandrashekhara K, Richards V, et al. Three-dimensional nonlinear finite element analysis of hot radial forging process for large diameter tubes[J]. Materials and Manufacturing Processes, 2010, 25(7): 669-678.
[10]郑亚杰, 樊黎霞. 锻造比对身管膛线成形影响分析[J]. 精密成形工程, 2016, 8(5):126-130.Zheng Y J, Fan L X. Effect of forging ratio on barrel rifling forming[J]. Journal of Netshape Forming Engineering, 2016, 8(5):126-130.
[11]高斌, 李强. 身管径向锻造材料流动的仿真分析[J]. 锻压技术, 2015, 40(11):155-158.Gao B, Li Q. Study on simulation of material flow for radial forging barrel[J].Forging & Stamping Technology, 2015,40 (11):155-158.
[12]Knap M, Kugler G, Palkowski H, et al. Prediction of material spreading in hot open-die forging[J]. Steel Research International, 2004, 75(6): 405-410.
[13]Tamura K, Tajima J. Optimization of hot free forging condition for the uniformity of forged shape by three dimensional rigid-plastic finite element analysis[J]. ISIJ International, 2001, 41(3): 268-274.
[14]Tamura K, Tajima J. Optimization of open die forging condition and tool design for ensuring both internal quality and dimensional precision by three-dimensional rigid-plastic finite element analysis[J]. Ironmaking & Steelmaking, 2003, 30(5): 405-411.
[15]Banaszek G, Szota P. A comprehensive numerical analysis of the effect of relative feed during the operation of stretch forging of large ingots in profiled anvils[J]. Journal of Materials Processing Technology, 2005, 169(3): 437-444.
[16]张保利. 四砧拔长辅具及自动拔长的数学模型研究[D]. 秦皇岛: 燕山大学, 2009.Zhang B L. Study on Four-Anvil Reducting Anxiliary Tool and Mathematical Model of Automatic Reduction[D]. Qinhuangdao:Yanshan University, 2009.
[17]栾军. 现代试验设计优化方法[M]. 上海: 上海交通大学出版社, 1995.Luan J. Modern Experimental Design and Optimization Method[M]. Shanghai:Shanghai Jiao Tong University Press, 1995.
[18]余琼, 董湘怀, 吴云剑. 径向压下率与送进率对径向锻造工件质量的影响[J]. 锻压技术, 2015, 40(8): 64-70.Yu Q, Dong X H, Wu Y J. Study on the influence of radial reduction ratio and feed ratio on radial forging quality[J]. Forging & Stamping Technology, 2015, 40(8): 64-70.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9