网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
Al-Mg-Si系铝合金不同变形条件下的组织力学行为
英文标题:Microstructure and mechanical property of aluminum alloy Al-Mg-Si under different deformation conditions
作者:郭端路 黄江华 陆辛 
单位:机械科学研究总院 
关键词:Al-Mg-Si系铝合金 常温拉深 热拉伸 硬度 动态软化机制 
分类号:TG304
出版年,卷(期):页码:2017,42(5):141-146
摘要:
对6014铝合金进行了常温拉深试验,采用不同的拉深凸模速度,研究了该铝合金变形中的组织力学行为;对6016铝合金进行热拉伸试验,相同应变速率下采用不同的拉伸温度,研究了该铝合金在热拉伸过程中的组织力学行为。实验表明:随着凸模速度(10~30 mm·min-1)增加,6014铝合金的常温拉深深度增大;随着拉伸温度(400~550 ℃)升高,6016铝合金的硬度增大,且沿拉伸轴向硬度值波动越大;在应变速率为1 s-1、温度为500 ℃下热拉伸,变形区有明显的动态再结晶过程,进一步升高温度会造成再结晶组织的晶粒粗化;6014和6016铝合金中均存在大量的Al、Fe、Si结晶相,但原始组织中6016的析出相更弥散,尺寸大小更均匀,更集中分布于晶界附近;比较6014铝合金常温拉深组织和6016铝合金热拉伸组织,冷变形后的晶粒组织更均匀,热拉伸后的晶粒尺寸差异很大,会降低材料变形后的力学性能。
The deep drawing test of aluminum alloy 6014 at room temperature was carried out under different punch velocities, and its microstructure and mechanical property were studied in the deformation. Then, the hot stretching test for aluminum alloy 6016 was conducted, and its microstructure and mechanical property were studied at different temperatures with the same strain rate. The experimental results show that the drawing height increases with the increase of punch velocity (10-30 mm·min-1) for the former, while for the latter, the material hardness increases with the increase of stretching temperature (400-550 ℃), and there is greater hardness value fluctuation along the stretching axis. However, the dynamic recrystallization process occurs obviously under the condition of stain rate of 1 s-1 and temperature of 500 ℃,and increasing temperature causes grain growth coarsening. Furthermore, there are a large number of (AlFeSi) crystalline phase in the two kinds of aluminum alloy of 6014 and 6016. Especially, it is more dispersion, uniform and concentrated near the grain boundary in the original microstructure for  aluminum alloy 6016. Comparing the microstructures between the room temperature deep drawing aluminum alloy 6014 and the hot tension aluminum alloy 6016 room temperature, the former is more homogeneous, and the latter is of great diversity for grain size so as to decrease the material mechanical properties.  
基金项目:
国家科技重大专项“高档数控机床与基础制造装备”(2014ZX04002)
作者简介:
郭端路(1991-),男,硕士研究生 陆辛(1957-),男,博士,研究员
参考文献:


[1]褚勇,李全伟,祝林.汽车轻量化用铝合金板冲压成形性研究[J]. 模具技术,2014,(5):9-12.Chu Y,Li Q W,Zhu L. Research on formability of aluminum alloy sheet for light weight of automobile [J]. Die and Mould Technology, 2014,(5):9-12.
[2]陈长年,李永兵,朗利辉,等. 汽车铝车身制造技术研究[J]. 材料应用,2013,(3):50-58. Chen C N, Li Y B, Lang L H, et al. Aluminum automobile body manufacturing technology research [J]. Material Application, 2013,(3):50-58.
[3] 赵颖,宋宝韫,李冰,等. 6063铝合金单、双杆连续挤压扩展成形的对比[J]. 塑性工程学报,2015, 22(1):19-23.Zhao Y, Song B Y, Li B, et al. A contrastive analysis of AA6063 continuous extrusion expansion forming with single feedstock and double feedstock [J]. Journal of Plasticity Engineering, 2015,22(1):19-23.
[4]陈佳,闫晓东,沈健,等. 热处理工艺对6A02合金管材组织性能的影响[J]. 稀有金属,2016,40(3):193-200.Chen J,Yan X D,Shen J, et al. Microstructure and properties of 6A02 aluminum alloy extruded tube with heat treatment [J]. Chinese Journal of Rare Metals,2016,40(3):193-200.
[5]谷珊珊,刁可山,李言波,等. 汽车用6016铝板拉深试验及有限元研究[J].锻压技术,2017,42(1):126-130.Gu S S, Diao K S, Li Y B, et al. Experimental and numerical investigations on the drawing performance of automotive aluminum sheet 6016[J]. Forging & Stamping Technology, 2017,42(1):126-130.
[6]李尧,张利君,胡礼木. 金属塑性成形原理[M]. 北京:机械工业出版社,2014.Li Y, Zhang L J, Hu L M. Principles of Metal Forming [M]. Beijing: China Machine Press, 2014.
[7]盛晓菲.6005A铝合金组织性能研究[D]. 长沙:中南大学,2011.Sheng X F. Research on Microstructure of 6005A Aluminum [D]. Changsha: Central South University,2011.
[8]田月,赵刚,田妮,等. Al-3Si-0.6Mg-(Cu, Mn)合金薄板的组织性能[J]. 材料与冶金学报,2016,15(1): 61-65.Tian Y, Zhao G, Tian N, et al. Microstructure and properties of Al-3Si-0.6Mg-(Cu,Mn) alloy sheet[J]. Journal of Materials and Metallurgy, 2016,15(1): 61-65.
[9]刘晓艳,潘清林,何运斌,等. Al-Cu-Mg-Ag合金热压缩变形的流变应力行为和显微组织[J]. 中国有色金属学报,2009, 19(2): 201-207.Liu X Y,Pan Q L,He Y B,et al. Flow stress behavior and microstructure of Al-Cu-Mg-Ag alloy during hot compression deformation [J]. The Chinese Journal of Nonferrous Metals,2009, 19(2): 201-207.
[10]范曦,潘清林,李建湘,等. Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织[J]. 中国有色金属学报,2010, 20(3): 420-426.Fan X, Pan Q L, Li J X, et al. Flow behavior and microstructure of Al-Mn-Mg-Cu-Ni alloy during hot compression deformation [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 420-426.
[11]Wang C, Yu F, Zhao D, et al. Hot deformation and processing maps of DC cast Al-15%Si alloy[J]. Materials Science and Engineering: A, 2013, 577: 73-80.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9