网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
汽车大型铝合金覆盖件的充液成形技术
英文标题:Hydroforming technology for large aluminum alloy panel of automobile
作者:郎利辉 孙志莹 王耀 
单位:北京航空航天大学 
关键词:铝合金 覆盖件 充液成形 发动机罩外板 起皱 破裂 
分类号:TG394
出版年,卷(期):页码:2017,42(8):22-28
摘要:
铝合金覆盖件的应用是汽车轻量化的关键,但其制造难度较大。通过研究铝合金发动机罩外板的充液成形工艺过程,了解先进柔性技术在汽车领域应用的可行性。分析了工艺参数中液室压力与凸模行程匹配及压边力对板料减薄率的影响,从成形极限上判断零件无起皱、破裂现象的范围。获得最优的整形液室压力为12~20 MPa,压边力过小,板料不能充分塑性变形,压边力过大,板料易失稳破裂,最优的恒定压边力范围为1600~2000 kN。研究表明,采用板材充液成形柔性制造工艺,可降低噪音,无冲击线,且由于液室压力的作用,滑移线减小,可提高大型铝合金弱刚度板材的质量。
The lightweight of automobile is the key of the application of aluminum alloy panel, but it is difficult to manufacture. The advanced flexible technology is feasible in the application of automotive field by researching the hydroforming process of the aluminum alloy engine hood outer panel. Then, the influences of matching chamber pressure with punch stroke and the blank holder force in the technological parameters on the thinning rate of sheet metal were analyzed, and the scope of the part without wrinkling and rupture was determined by the forming limit diagram (FLD). Furthermore, the optimal shaping chamber pressure is obtained within 12-20 MPa. However, when the blank holder force is too small, the plastic deformation of sheet metal can not be realized completely; while the blank holder force is too large, the rupture is easily occurred. Thus, the optimal constant blank holder force is within 1600-2000 kN. The results show that the noise is reduced in the factory by the sheet hydroforming of flexible manufacturing process, and there is no impact line. Finally, the slip line is reduced because of chamber pressure, and the quality of large aluminum alloy plate with weak rigidity is improved.
基金项目:
国家科技重大专项(2014ZX04002041)
作者简介:
郎利辉(1970-),男,博士,教授 孙志莹(1984-),女,博士研究生
参考文献:


[1]Lang L H, Wang Y M, Xie Y S, et al. Pre-bulging effect during sheet hydroforming process of aluminum alloy box with unequal height and flat bottom [J]. Transactions of Nonferrous Metals Society of China,2012, 22: 302-308.
[2]郎利辉,孙志莹,孔德帅,等. 复杂薄壁航空整体钣金件的液压成形技术[J]. 锻压技术,2014, 39(10): 25-31, 42.Lang L H,Sun Z Y,Kong D S, et al. Hydroforming technology on whole complex thin-walled sheet in aviation industry [J]. Forging & Stamping Technology,2014, 39(10): 25-31, 42.
[3]Xu Y C, Chen Y, Yuan S J. Influences of loading paths on thickness of aluminium alloy cup with hydro-mechanical deep drawing[J]. International Journal of Materials & Product Technology,2010, 38(2-3): 173-183.
[4]Zhang Q D, Lang L H, Wang Y, et al. Theoretical investigation on the springback behavior of AA7B04 sheet in hydraulic bulge process [J]. International Journal of Advanced Manufacturing Technology,2016, 87(9-12): 2861-2871.
[5]褚勇,李全伟,祝林. 汽车轻量化用铝合金板冲压成形性研究[J]. 模具技术,2014,(5): 9-12.Chu Y, Li Q W, Zhu L. Research on formability of aluminum alloy sheet for lightweight of automobile[J]. Die and Mould Technology,2014,(5): 9-12.
[6]吕祝星, 宋燕利,兰箭. 基于特征的汽车覆盖件冲压工艺优选机制[J]. 塑性工程学报, 2016,23(3): 45-51.Lyu Z X, Song Y L,Lan J. Feature-based optimization mechanism of stamping process for automobile panels [J]. Journal of Plasticity Engineering, 2016,23(3): 45-51.
[7]Yuan S J, Han C, Wang X S. Hydroforming of automotive structural components with rectangular-sections[J]. International Journal of Machine Tools and Manufacture, 2006, 46(11): 1201-1206.
[8]Choi S, Lee M, Kang C. Effect of process parameters and laminating methods on spring-back in V-bending of CFRP/CR340 hybrid composites[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(3): 395-400.
[9]Sun S, Daxin E. The investigation of time-dependent springback for AC170PX aluminum alloy at room temperature[J]. Materials & Design, 2016, 93: 118-127.
[10]严勇,吴超,胡志力,等. 汽车铝合金覆盖件成形数值模拟的各向异性屈服准则研究[J]. 塑性工程学报, 2016, 23 (2):92-97.Yan Y, Wu C, Hu Z L, et al. Anisotropic yield criterion for automotive aluminum panels forming numerical simulation[J]. Journal of Plasticity Engineering, 2016, 23 (2) :92-97.
[11]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature [S].
[12]张钧萍,金庆生,马鸣图. 6016铝合金热处理工艺研究[J]. 中国工程科学, 2014, 16 (1) :103-107.Zhang J P, Jin Q S, Ma M T. Research on heat treatment process of 6016 aluminum alloy[J]. Engineering Sciences, 2014, 16 (1) :103-107.
[13]Meng B, Wan M, Wu X, et al. Inner wrinkling control in hydrodynamic deep drawing of an irregular surface part using drawbeads[J]. Chinese Journal of Aeronautics, 2014, 27(3): 697-707.
[14]Hashemi R, Madoliat R, Afshar A. Prediction of forming limit diagrams using the modified M-K method in hydroforming of aluminum tubes [J]. International Journal of Material Forming, 2016, 9(3): 297-303.
[15]Green D E, Angara T S, Nurcheshmeh M, et al. A practical method to evaluate the forming severity of tubular hydroformed parts[J]. International Journal of Advanced Manufacturing Technology, 2012, 62(9-12): 965-980.
[16]Cai G, Zhou X, Lang L H, et al. Research on aluminum alloy sheet thermoplastic deformation behavior based upon warm bulging test[J]. AIP Advances, 2016, 6 (2) :1136-1146.
[17]Cai G, Lang L H, Liu K, et al. Research on the effect of flow stress calculation on aluminum alloy sheet deformation behavior based on warm bulging test[J]. Metals and Materials International, 2015, 21(2): 365-373.
[18]郎利辉,袁超,王永铭,等. 6061铝合金飞行器翼尖蒙皮充液成形及起皱控制研究[J]. 锻压技术,2014,39(9): 36-41.Lang L H,Yuan C,Wang Y M, et al. Research on hydroforming and wrinkle control for wing tip skin of 6061 aluminum alloy[J]. Forging & Stamping Technology, 2014,39(9): 36-41.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9