网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
管材加尾垫热挤压成形工艺
英文标题:Hot extrusion forming process of pipe with tail cushion
作者:程逸明 拓雷锋 周根树 康喜唐 李强 
单位:山西太钢不锈钢钢管有限公司 西安交通大学 
关键词:不锈钢316L 钼合金 热挤压 尾垫 压余 
分类号:TG376.2
出版年,卷(期):页码:2017,42(10):69-72
摘要:

为了降低管材压余分离工艺难度及提高管材产品成材率,研究了一种加尾垫热挤压成形工艺。以不锈钢316L作为尾垫,钼合金作为被挤压坯料,采用CAXA建立加尾垫挤压模型,设计了4种配合方式,并借助DEFORM-2D软件模拟分析了4种配合方式下挤压过程中的金属流动特征、挤压载荷曲线以及应力分布。模拟结果显示:当尾垫内孔小于或等于被挤压坯料内孔时,压余和管材能够实现自动分离;当尾垫内孔大于被挤压坯料内孔时,压余和管材不能实现自动分离,需要热锯分切。锥面配合的尾部尺寸稳定性要好于其他3种配合方式。最后以应用于液晶电子显示屏溅射靶材的钼管热挤压工艺生产实践为例,验证了尾垫与被挤压管坯等内孔挤压能够实现压余和管材的自动分离。

 In order to solve the difficulty of separation process for pipe surplus metal and improve the utilization rate of pipe products, the hot extrusion forming process with tail cushion was researched. Taking stainless steel 316L as tail cushion and molybdenum alloy as extrusion billet, the extrusion model with tail cushion was established by software CAXA, four matching modes were designed, and the metal flow characteristic, extrusion force curve and stress distribution in extrusion process under four matching modes were simulated and analyzed by software DEFORM2D. The simulation results show that the surplus metal and pipe can separate automatically when the inner hole of tail cushion is small or equal to that of extrusion billet, and the surplus metal and pipe can not separate automatically when the inner hole of tail cushion is larger than that of extrusion billet which need to be separated by hot sawing. Therefore, the dimension stability in tail part of the conical surface matching method is better than that of other three matching modes. At last, the molybdenum pipe hot extrusion process is applied in sputtering target of liquid crystal displays, and the automatic separation of surplus metal and pipe is verified when the inner hole sizes of tail cushion and billet are equal.

基金项目:
国家自然科学基金青年科学基金资助项目(51305228)
作者简介:
作者简介:程逸明(1984-),男,硕士,工程师,E-mail:chengyim@126.com;通讯作者:拓雷锋(1984-),男,博士研究生,工程师,E-mail:tuoleifeng1984@sjtu.edu.cn
参考文献:

[1]邓小民, 孙中建, 李胜祗, . 铝合金挤压时的摩擦与摩擦因数[J]. 中国有色金属学报, 2003, 13(3):599-605.


Deng X M, Sun Z J, Li S Z, et al. Friction and friction coefficient for aluminum alloy extrusion[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(3):599-605.


[2]孙颖迪, 陈秋荣. AZ31镁合金电池筒反挤压工艺仿真研究[J]. 锻压技术, 2015, 40(3): 46-52.


Sun Y D, Chen Q R. Numerical study of backward extrusion process for AZ31 magnesium alloy battery cylinder[J]. Forging & Stamping Technology, 2015, 40(3):46-52.


[3]陈莉,刘元文,宋宝韫,等. 铜连续挤压工艺过程中的温度分析[J]. 锻压技术, 2007, 32(4):37-39.


Chen L, Liu Y W, Song B Y, et al. Analysis of temperature in copper continuous extrusion process[J].Forging & Stamping Technology, 2007, 32(4):37-39.


[4]吴桂秀, 郝新, 高峰. 321不锈钢管材挤压过程的有限元模拟[J]. 热加工工艺, 2010, 39(11): 120-122.


Wu G X, Hao X, Gao F. FEM simulation of extrusion process for 321 stainless steel tubes[J]. Hot Working Technology, 2010, 39(11): 120-122.


[5]刘海定, 王东哲, 黄国平, . 热处理对沉淀强化型铁镍基耐蚀合金热挤压厚壁管力学性能的影响[J]. 金属热处理, 2016, 41(12): 153-157.


Liu H D, Wang D Z, Huang G P, et al. Influence of heat treatment on mechanical properties of precipitation strengthened Fe-Ni based corrosionresistant alloy hot extrusion heavy wall pipe[J]. Heat Treatment of Metals, 2016,41(12): 153-157.


[6]朱琦, 王林, 杨秦莉, . 钼管靶材的挤压理论与组织性能分析[J]. 中国钼业, 2014,38(4): 50-53.


Zhu Q, Wang L, Yang Q L, et al.Extrusion theory and analysis on microstructure and properties of molybdenum tube target [J]. Chinese Molybdenum Industry, 2014, 38(4): 50-53.


[7]高新, 郭宝峰. 反向挤压无压余钢管变形过程研究[J]. 金属成形工艺, 1993, 11(1): 46-48.


Gao X, Guo B F. Study on the deformation process of backward extrusion tube without discard[J]. Metal Forming Technology, 1993, 11(1): 46-48.


[8]书智元, 刘玉君, 周波, . 钢结构氧气切割开孔残余应力数值分析与实践[J]. 大连理工大学学报,2012, 52(3): 373-380.


Shu Z Y, Liu Y J, Zhou B, et al. Numerical analysis and experimental research on residual stress distribution induced by oxygen cutting opening of steel structure[J]. Journal of Dalian University of Technology2012, 52(3): 373-380.


[9]齐广霞, 梅瑞斌, 包立. In718合金反挤压成形数值模拟[J]. 锻压装备与制造技术, 2005, 40(6): 63-66.


Qi G X, Mei R B, Bao L. Numerical simulation of inconel 718 hot backward extrusion[J]. China Metalforming Equipment & Manufacturing Technology, 2005, 40(6): 63-66.


[10]郭青苗, 李海涛, 李德富, . GH625合金管材热挤压成型工艺及组织演变的研究[J].稀有金属, 2011, 35(5): 684-689.


Guo Q M, Li H T, Li D F, et al. Hot extrusion moulding process and microstructure evolution of GH625 superalloy tubes[J]. Chinese Journal of Rare Materials, 2011, 35(5): 684-689.


[11]雷波,苏承龙. 加尾垫挤压生产不锈钢管的工艺完善[J]. 特钢技术,2005, 10(3):13-15.


Lei B, Su C L. Improving process for extruding stainless steel tube by adding tail cushion[J]. Special Steel Technology, 2005, 10(3):13-15.


[12]刘仕林. 改善18Ni挤压异型管质量问题的工艺探讨[J]. 特钢技术, 2013, 19(4): 41-49.


Liu S L. Technology discussion on improving the quality problems of the hot extruded 18Ni profiled tubes[J]. Special Steel Technology, 2013, 19(4): 41-49.


[13]王天石, 张人佶, 颜永年, . 铝材无压余热挤压成形研究[J]. 电加工与模具, 2009, (4):32-35.


Wang T S, Zhang R J, Yang Y N, et al. Research on aluminum hot extrusion without discard[J]. Electromachining & Mould, 2009, (4):32-35.


[14]张宏亮. 粉末冶金钼管热挤压工艺基础研究[D].太原:太原理工大学, 2010.


Zhang H L. The Fundamental Research of Hot Extrusion Process for Powder Metallurgy Molybdenum Tube [D]. Taiyuan: Taiyuan University of Technology, 2010.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9