网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
模具锥角对AZ31镁合金棒材热减径挤压的影响规律
英文标题:Influence law of die-taper angle on thermal-ironing extrusion process of magnesium alloy AZ31 bar
作者:雷同飞 潘峰 
单位:西京学院 
关键词:AZ31镁合金棒材 热减径挤压 模具锥角α 动态再结晶 晶粒尺寸 
分类号:TG376.9
出版年,卷(期):页码:2017,42(11):132-135
摘要:
模具锥角α是影响镁合金型材热减径挤压动态再结晶行为的重要参数之一,通过建立AZ31镁合金棒材热减径挤压工艺动态再结晶预测模型,并针对模拟结果进行了挤压实验,对模具锥角α的影响规律进行了研究。结果表明:晶粒尺寸沿径向由中心向表层逐渐细化,沿轴向呈带状分布;随模具锥角α的增大,型材表层金属晶粒尺寸细化程度不断加剧;当模具锥角α从50°过渡到90°时,挤压型材表层金属平均晶粒尺寸细化程度提升25%,实验与模拟结果吻合良好。
Die-taper angle α is one of the important parameters influencing dynamic recrystallization behavior during thermal-ironing extrusion process of magnesium alloy profile. Therefore, through establishing the prediction model of dynamic recrystallization during thermal-ironing extrusion process for magnesium alloy AZ31 bar,the extrusion test for simulation result was conducted,and the influence law of die-taper angle α was studied. The results show that the grain size decreases gradually from the center to the surface along the radial direction,and the grain distributes in ribbon state along the axial direction. However, with the increase of α, the grain size located nearby the surface of extruded bar decreases gradually. When the die-taper angle α increases from 50° to 90°, the average grain size of the extruded surface metal is improved by 25%. The results from simulation and from actual experiments are in good agreement.
基金项目:
陕西省自然科学基金资助项目(2013JM7026);陕西省教育厅专项科研计划项目(14JK2160);西京学院科研基金项目(XJ160118)
作者简介:
作者简介:雷同飞(1982-),男,硕士,副教授 E-mail:leitongfeipaper@163.com
参考文献:
[1]周超, 彭必友, 沈冰, 等. 基于变形均匀性的 AZ31 镁合金 ECAP 多道次成形工艺研究[J]. 锻压技术, 2013, 38(3): 151-157.

Zhou C, Peng B Y, Shen B, et al. Study of forming process for AZ31 magnesium alloy during multiple passes ECAP based on homogeneous deformation[J]. Forging & Stamping Technology, 2013, 38(3): 151-157.

[2]张青来, 肖富贵, 郭海铃. AZ31B 镁合金薄板超塑性气胀成形[J]. 稀有金属材料与工程, 2009, 38(7): 1259-1263.

Zhang Q L, Xiao F G, Guo H L. Superplastic gas bulging forming of AZ31B magnesium alloy thin sheet[J]. Rare Metal Materials and Engineering, 2009,38 (7): 1259-1263.

[3]梁书锦, 刘祖岩, 王尔德. AZ31 镁合金挤压过程的数值模拟[J]. 稀有金属材料与工程, 2015, 44(10): 2471-2475.

Liang S J, Liu Z Y, Wang E D. Extrusion process simulation of AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering, 2015, 44(10): 2471-2475.

[4]马俊. AZ31镁合金型材ECAP复合挤压工艺宏微观仿真研究[J]. 锻压技术,2014,39(8):115-118.

Ma J. Macro-micro coupled numerical study on AZ31 magnesium alloy profile made by ECAP complex extrusion process [J]. Forging & Stamping Technology,2014,39(8): 115-118.

[5]刘自乾, 冯小明, 张会. 等通道转角挤压镁合金的微观组织和力学性能[J]. 热加工工艺, 2010 39(11): 28-30.

Liu Z Q, Feng X M, Zhang H. Microstructure and mechanical properties of Mg alloy processed by ECAP[J]. Hot Working Technology, 2010, 39(11): 28-30.

[6]刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006, 16(1): 1-12.

Liu C M, Liu Z J, Zhu X R, et al. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(1): 1-12.

[7]刘劲松, 竺晓华, 郑黎, 等. AZ31 镁合金交叉轧制塑性应变有限元模拟分析[J]. 轻合金加工技术, 2009, 37(2): 18-20.

Liu J S, Zhu X H, Zheng L, et al. Finite element simulation and analysis of the plastic strain in cross rolling for AZ31 magnesium alloy[J]. Light Alloy Fabrication Technology, 2009, 37(2): 18-20.

[8]王华君, 夏巨谌, 胡国安. 减径挤压工艺成形极限分析[J]. 模具技术, 2005,(3): 3-6.

Wang H J, Xia J C, Hu G A. Forming limit analysis for ironing process[J]. Die and Mould Technology, 2005,(3): 3-6.

[9]邓陶勇, 胡成亮, 刘全坤. 工艺参数对减径挤压的影响[J]. 锻压装备与制造技术, 2006,41(4): 48-50.

Deng T Y, Hu C L, Liu Q K. Influence of technological parameter on ironing[J]. China Metalforming Equipment & Manufacturing Technology, 2006,41(4): 48-50.

[10]刘静安, 黄凯, 谭炽东.铝合金挤压工模具技术[M]. 北京:冶金工业出版社, 2009.

Liu J A, Huang K, Tan Z D. Extrusion Die and Mould Technology for Aluminum Alloy[M]. Beijing: Metallurgical Industry Press, 2009.

[11]马俊, 梁胜龙. 焊缝对ZK60镁合金方管分流挤压成形的影响[J]. 锻压技术,2016, 41(7): 46-50.

Ma J, Liang S L. Influence of welding line on magnesium alloy ZK60 square tube in shunt extrusion[J]. Forging & Stamping Technology,2016, 41(7): 46-50.

[12]黄诗尧. AZ31镁合金挤压成形微观组织演化的实验研究与数值模拟[D]. 上海:上海交通大学, 2010.

Huang S Y. Experimental Study and Numerical Simulation of Microstructure Evolution of AZ31 Magnesium Alloy Extrusion Forming[D]. Shanghai: Shanghai Jiao Tong University, 2010.

[13]李洪波, 吕玫, 黄木, 等. 铸态 AZ31 镁合金挤压变形 Yada 模型系数的确定及其变形过程中微观组织变化模拟[A]. 第3届全国精密锻造学术研讨会论文集[C]. 北京,2008.

Li H B, Lyu M, Huang M, et al. The deter-mination of Yada model′s coefficient of casting AZ31 Mg alloy and the simulation of microorganization evolution[A]. The Third National Symposium on Precision Forging[C].Beijing, 2008.

[14]雷同飞. 汽车发动机用 6A02 铝合金管材挤压速度仿真优化[J]. 热加工工艺,2013, 42(15): 108-112.

Lei T F. Optimization of extrusion speed of 6A02 aluminum alloy tube for automotive engine based on FE [J]. Hot Working Technology, 2013, 42(15): 108-112.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9