[1]陈世佳. 大锻件材料30Cr2Ni4MoV钢的热变形特性研究[D].上海:上海交通大学,2009.
Chen S J. Study on Characteristics of Heavy Forging Material 30Cr2Ni4MoV Steel in Hot Deformation [D].Shanghai: Shanghai Jiao Tong University, 2009.
[2]关明,付赟秋,常志梁,等. 大锻件锻造过程中温度场测定及其结果分析[J]. 锻压技术,2012,37(2):6-9.
Guan M, Fu Y Q, Chang Z L, et al. Temperature field detection and result analysis of heavy forging during forging process [J]. Forging & Stamping Technology, 2012, 37(2):6-9.
[3]潘再勇. 锻造过程温度场模拟数值振荡的研究[D]. 武汉:华中科技大学,2011.
Pang Z Y. Study on Numerical Oscillation of Temperature Field Simulation during Forging Process [D].Wuhan: Huazhong University of Science and Technology,2011.
[4]谢建斌. 金属及合金在不同介质中淬火时的数值模拟和应用研究[D].昆明:昆明理工大学,2003.
Xie J B. Studies on the Numerical Simulation for Metals and Alloys during Different Medium Quenching and Its Application [D]. Kunming: Kunming University of Science and Technology, 2003.
[5]李红娟. 典形件控冷过程综合换热及其应用[D]. 秦皇岛:燕山大学,2013.
Li H J. Typical Steel Heat Transfer in Controlled Cooling Process and Its Application [D]. Qinhuangdao: Yanshan University, 2013.
[6]袁俭,张伟民,刘占仓,等. 不同冷却方式下换热系数的测量与计算[J]. 材料热处理学报,2005,26(4):115-119.
Yuan J, Zhang W M, Liu Z C, et al.The measurement and calculation of heat transfer coefficient under different cooling conditions [J].Transactions of Materials and Heat Treatment, 2005, 26(4):115-119.
[7]黄华贵,燕猛,杜凤山. 线棒材轧后冷却过程综合换热系数的实验测定[J]. 热加工工艺,2014, 43(3):84-87.
Huang H G, Yan M, Du F S. Measurement of integrated heat transfer coefficient for steel wire and rod during cooling process after rolling [J].Hot Working Technology, 2014, 43(3):84-87.
[8]张庆峰,焦四海,马朝晖. 厚板淬火过程温度场的有限元模拟[J]. 热加工工艺,2010,39(6):157-160.
Zhang Q F, Jiao S H, Ma Z H. FEM simulation of temperature field in plate during quenching process [J]. Hot Working Technology, 2010, 39(6):157-160.
[9]王大鹏. 轴对称大锻件淬火过程温度场及组织场的数值模拟[D]. 大连:大连理工大学,2002.
Wang D P. Numerical Simulation of Temperature Field and Tissue Field in Quenching Process of Axisymmetric Forging [D]. Dalian: Dalian University of Technology, 2002.
[10]程柏松, 肖纳敏, 李殿中,等. 界面换热系数对淬火过程变形模拟的影响[J]. 热加工工艺, 2012, 41(22):186-190.
Cheng B S, Xiao N M, Li D Z, et al. Sensitivity analysis of the effect of interfacial heat transfer coefficient on distortion simulation during quenching [J]. Hot Working Technology, 2012, 41(22):186-190.
[11]Yu Y, Luo X. Identification of heat transfer coefficients of steel billet in continuous casting by weight least square and improved difference evolution method[J]. Applied Thermal Engineering, 2016, 114:36-43.
[12]李树娟. 中锰第三代汽车钢温热成形中换热系数的求解分析[D]. 大连:大连理工大学,2016.
Li S J. Analysis on the Heat Transfer Coefficient of the Third Generation Automotive Medium-Mn Steel in Warm/Hot Forming [D]. Dalian: Dalian University of Technology, 2016.
[13]曹欣,孙志超,杨合. 基于DEFORM反传热模形表面换热系数的确定[J]. 塑性工程学报,2013,20(2):130-135.
Cao X, Sun Z C, Yang H. Determination of surface heat transfer coefficient via inverse heat transfer model based on deform software [J]. Journal of Plasticity Engineering, 2013, 20(2):130-135.
[14]Liu C L, Gao C, Wolfersdorf J V, et al. Numerical study on the temporal variations and physics of heat transfer coefficient on a flat plate with unsteady thermal boundary conditions[J]. International Journal of Thermal Sciences, 2017, 113:20-37.
[15]Caron E J F R, Daun K J, Wells M A. Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures[J]. International Journal of Heat & Mass Transfer, 2014, 71(1):396-404.
|