网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6014铝合金板材温拉伸本构方程
英文标题:Constitutive equations of aluminum alloy 6014 sheet under warm tension
作者:沈智 谢谈 梁培新 
单位:南昌工程学院 北京机电研究所 
关键词:6014铝合金 温拉伸 本构方程 流变应力 韧性断裂 脆性断裂 
分类号:TG146.21
出版年,卷(期):页码:2017,42(12):144-149
摘要:

 采用DDL50高温电子万能试验机,在变形温度为298~573 K、应变速率为0.0001~0.01 s-1时,针对6014铝合金薄板进行温拉伸实验研究,基于Fields & Backofen本构方程进行修正,建立了6014铝合金的温拉伸本构模型以描述6014铝合金温拉伸时的流变行为。结果表明:相同应变速率下,随着温度升高,6014铝合金的流变应力降低,伸长率先增加后下降,并且当温度为473 K时,伸长率达到最大值。通过断口扫描电镜照片分析了6014铝合金在473和573 K时断裂过程的差异,温度为473 K时,断口韧窝大且深,表现为典型的韧性断裂,而温度为573 K时,韧窝小且浅,表现为脆性断裂,从微观角度解释了不同温度下伸长率的差异。

 

 The warm tension tensile tests of aluminum alloy 6014 sheet were performed at deformation temperatures of 298-573 K with strain rate of 0.0001-0.01 s-1 on DDL50 high temperature electronic universal testing machine, and a constitutive equation modified by Fields & Backofen equation was established to describe the flow behavior of aluminum alloy 6014 in warm tensile. The results show that under the same strain rate, with the increasing of temperature the flow stress decreases, while the elongation increases firstly and then decreases, and the elongation reaches the highest value at 473 K. Then, the fracture surface was observed by SEM to analyze the difference of fracture process at 473 K and 573 K. The results show that the dimples on fracture are big and deep at 473 K, and the fracture is typical ductile fracture. While the dimples are small and shallow at 573 K, and the fracture is typical brittle fracture. Thus, the difference of elongation at different temperatures is analyzed from microscopic view.

 
基金项目:
国家重大科技专项“高档数控机床与基础制造装备”(2014ZX04002-071)
作者简介:
作者简介:沈智(1980-),男,博士,工程师,讲师 E-mail:nickshen009@163.com
参考文献:

 
[1]路洪洲, 王智文, 陈一龙, 等. 汽车轻量化评价[J]. 汽车工程学报, 2015, 5(1): 1-8. 


 

Lu H Z, Wang Z W, Chen Y L, et al. Evaluation methodology for automotive lightweight design[J].Chinese Journal of Automotive Engineering, 2015, 5(1):1-8.

 


[2]郑晖, 赵曦雅. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术, 2016,41(2):1-5.

 

Zheng H, Zhao X Y. Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forging & Stamping Technology, 2016, 41(2):1-5.

 


[3]马鸣图, 毕祥玉, 游江海, 等. 铝合金汽车板性能及其应用的研究进展[J]. 机械工程材料, 2010, 34(6):1-5. 

 

Ma M T, Bi X Y, You J H, et al. Research progress of property and its application of aluminium alloy auto sheet[J]. Materials for Mechanical Engineering, 2010, 34(6):1-5.

 


[4]刘合军, 郎利辉, 李涛. 铝合金板材温热成形性能[J]. 塑性工程学报, 2009, 16(3): 145-148.

 

Liu H J, Lang L H, Li T. Investigation of formability of aluminum alloy sheet at elevated temperature[J]. Journal of Plasticity Engineering, 2009, 16(3): 145-148.

 


[5]王孟君, 任杰, 黄电源, 等. 汽车用5182铝合金板材的温拉伸流变行为[J]. 中国有色金属学报, 2008, 18(11): 1958-1963.

 

Wang M J, Ren J, Huang D Y, et al. Flow behavior of 5182 aluminum alloy for automotive body sheet during warm tensile deformation[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(11): 1958-1963.

 


[6]邓学峰, 张辉, 陈振华. 耐热铝合金(FVS0812)板材温拉伸本构方程[J]. 塑性工程学报, 2006, 13(3): 83-87. 

 

Deng X F, Zhang H, Chen Z H. Tensile deformation behavior of heat resistance aluminum (FVS0812) sheet at elevated temperature[J]. Journal of Plasticity Engineering, 2006, 13(3): 83-87.

 


[7]张志, 郎利辉, 李涛, 等. 高强度铝合金7B04-T6板材温拉伸本构方程[J]. 北京航空航天大学学报, 2009, 35(5): 600-603. 

 

Zhang Z, Lang L H, Li T, et al. Constitutive equations of high strength aluminum alloy sheet 7B04-T6 under warm tension[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 600-603.

 


[8]杨希英, 郎利辉, 刘康宁, 等. 5A06-O铝镁合金板材温热成形本构方程研究[J].精密成形工程, 2015, 7(1):22-26. 

 

Yang X Y, Lang L H, Liu K N, et al. Constitutive equation of 5A06-O aluminum magnesium alloy sheet in warm/hot forming[J]. Journal of Netshape Forming Engineering, 2015, 7(1):22-26.

 


[9]Bai Q, Mohamed M, Shi Z, et al. Application of a continuum damage mechanics (CDM)-based model for predicting formability of warm formed aluminium alloy[J]. International Journal of Advanced Manufacturing Technology, 2017, 88: 3437-3446.

 


[10]Mohamed M, Shi Z, Lin J G, et al. Strain-based continuum damage mechanics model for predicting FLC of AA5754 under warm forming conditions[J]. Applied Mechanics & Materials, 2015, 784:460-467.

 


[11]陈婕尔, 王孟君, 杨刚, 等. 汽车用5182铝合金板温冲压实验研究及数值模拟[J]. 中国有色金属学报, 2012, 22(12):3342-3347. 

 

Chen J E, Wang M J, Yang G, et al. Experimental study and numerical simulation of warm stamping of 5182 aluminum alloy for automotive body[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(12):3342-3347.

 


[12]Wang N, Chen G L, Chen M H. Constitutive relationship and parameters optimization of 6181 H18 aluminum alloy hot forming process with synchronous cooling[J]. Materials Science Forum, 2013, 770(3):324-328.

 


[13]Zhou J, Wang B Y, Lin J G, et al. Forming defects in aluminum alloy hot stamping of side-door impact beam[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11):3611-3620.

 


[14]Fan X B, He Z B, Zhou W X, et al. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions[J]. Journal of Materials Processing Technology, 2016, 228:179-185.

 


[15]李文科, 湛利华, 赵俊. 热冲压工艺对6061铝合金U型件成形质量的影响[J]. 中国有色金属学报, 2016, 26(6):1159-1166. 

 

Li W K, Zhan L H, Zhao J. Effect of hot stamping process on forming quality of 6061 aluminum alloy U-shaped parts[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(6):1159-1166.

 


[16]GB/T 4338—2006,金属材料高温拉伸试验方法[S].

 

GB/T 4338—2006, Metallic materials—Tensile testing at elevated temperature[S].

 


[17]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].

 

GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

 


[18]张晓华, 邱晓钢, 卢国清, 等. 应变速率敏感系数(m值)测试方法探讨[J]. 钢铁钒钛, 2001, 22(1):63-68. 

 

Zhang X H, Qiu X G, Lu G Q, et al. Study of test and measurement method for coefficient (m value) of strain rate sensitivity[J]. Iron Steel Vanadium Titanium, 2001, 22(1):63-68.

 


[19]Dong Y, Zhang C, Zhao G, et al. Constitutive equation and processing maps of an AlMgSi aluminum alloy: Determination and application in simulating extrusion process of complex profiles[J]. Materials & Design, 2016, 92:983-997.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9