[1]闻邦椿. 机械设计手册-轴及其连接件[M]. 北京: 机械工业出版社, 2015.
Wen B C. Mechanical Design Handbook-Shaft and Connectors[M]. Beijing: China Machine Press, 2015.
[2]秦大同, 谢里阳. 现代机械设计手册-轴及其连接件设计[M]. 北京: 化学工业出版社, 2013.
Qin D T, Xie L Y. Modern Mechanical Design Manual-Design of Shaft and Connectors [M]. Beijing: Chemical Industry Press, 2013.
[3]欧阳帆. 零部件轻量化是汽车轻量化的根本[J]. 汽车与配件, 2010, (10):24-27.
Ouyang F. Lightweight automobile results from lightweight parts[J]. Automobile & Parts, 2010, (10):24-27.
[4]范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5 (1):1-16.
Fan Z J, Gui L J, Su R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5 (1):1-16.
[5]Groche P, Fritsche D, Tekkaya E A, et al. Incremental bulk metal forming[J]. Annals of the CIRP, 2007, 56(2): 635-656.
[6]Felix Schmieder, Peter Kettner. Manufacturing of hollow transmission shafts via bulk-metal forging[J]. Journal of Materials Processing Technology, 1997, 71 (1): 113-118.
[7]刘鸿文. 材料力学[M]. 北京: 高等教育出版社, 2004.
Liu H W. Mechanics of Materials[M]. Beijing: High Education Press, 2004.
[8]刘贺. 超大型变截面内孔空心主轴锻件锻造工艺研究[J]. 大型铸锻件, 2015, (6): 39-41.
Liu H. Research on forging process of ultra large variable cross-section hollow spindle forging[J]. Heavy Casting and Forging, 2015, (6):39-41.
[9]牛立群, 张琦, 解明, 等. 基于FORGE-3D径向锻造工艺的数值模拟[J]. 锻压技术, 2017, 42(2):167-171.
Niu L Q, Zhang Q, Xie M, et al. The simulation of rotary forging process based on FORGE-3D[J]. Forging & Stamping Technology, 2017, 42(2):167-171.
[10]卫建军, 刘建生. 径向锻造锤头结构对车轴成形的影响分析[J]. 太原科技大学学报, 2008, 29(4):313-316.
Wei J J, Liu J S. Influence of the radial forging hammer on the forming process of the axle[J]. Journal of Taiyuan University of Science and Technology, 2008, 29(4):313-316.
[11]秦敏, 李继光, 房娃, 等. 空心车轴径向锻造工艺的模拟研究[J]. 太原科技大学学报, 2008, 29 (5):373-376.
Qin M, Li J G, Fang W, et al. The simulation of rotary forging of hollow axle[J]. Journal of Taiyuan University of Science and Technology, 2008, 29 (5):373-376.
[12]Schmoeckel D, Speck F D. Axial-radial forming of tubular components[J]. CIRP Annals Manufacturing Technology, 1995, 44 (1): 235-238.
[13]张琦, 母东, 靳凯强, 等. 旋转锻造成形技术研究现状[J]. 锻压技术, 2015, 40(1):1-6.
Zhang Q, Mu D, Jin K Q, et al. Research status of rotary forging technology[J]. Forging & Stamping Technology, 2015, 40 (1):1-6.
[14]赵升吨, 张玉亭. 旋锻技术的研究现状及其应用[J]. 锻压装备与制造技术, 2010, 46(2):16-20.
Zhao S D, Zhang Y T. Research status and its application of rotary swag technique[J]. China Metalforming Equipment & Manufacturing Technology, 2010, 46(2):16-20.
[15]马鹏举, 许志永, 程向, 等. 基于旋转锻造工艺的航空发动机薄壁空心细长轴加工精度研究[J]. 锻压技术, 2017, 42 (3):1-10.
Ma P J, Xu Z Y, Cheng X, et al. Study on machining precision of thin wall long hollow shaft for aero engine[J]. Forging & Stamping Technology, 2017, 42 (3):1-10.
[16]Wang G C, Zhao G Q, Huang X H, et al. Analysis and design of a new manufacturing process for a support shaft using the finite element method[J]. Journal of Materials Processing Technology, 2002, 121(2): 259-264.
[17]张传海. 长轴深孔件热挤压工艺设计及数值模拟[D]. 长春: 吉林大学, 2013.
Zhang C H. Process Design and Numerical Simulation of Hot Extrusion Forming for Deep Hole Parts[D]. Changchun: Jilin University, 2013.
[18]徐伟. 轿车变速箱轴类件多工位冷精锻工艺及模具研究[D]. 武汉:华中科技大学,2007.
Xu W. Study on Multistage Cold Precision Forging Process and Die of the Shaft in Gear-box[D]. Wuhan: Huazhong University of Science & Technology, 2007.
[19]Peng W F, Zheng S H, Chiu Yijui, et al. Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft[J]. Rare Metal Materials and Engineering, 2016, 45(4):836-842.
[20]Yang C P, Ma J W, Hu Z H. Analysis and design of cross wedge rolling hollow axle sleeve with mandrel[J]. Journal of Materials Processing Technology, 2017, 239: 346-358.
[21]Bartnicki J, Pater Z. The aspects of stability in cross-wedge rolling processes of hollowed shafts[J]. Journal of Materials Processing Technology, 2004, 155-156: 1867-1873.
[22]Urankar S, Lovell M, Morrow C, et al. Development of a critical friction model for cross wedge rolling hollow shafts[J]. Journal of Materials Processing Technology, 2006, 177 (1-3): 539-544.
[23]Urankar S, Lovell M, Morrow C, et al. Establishment of failure conditions for the cross-wedge rolling of hollow shafts[J]. Journal of Materials Processing Technology, 2006, 177 (1-3): 545-549.
[24]杨翠苹, 张康生, 胡正寰. 两辊楔横轧等内径空心轴产生椭圆原因的数值模拟研究[J]. 北京科技大学学报, 2012, 34(12): 1426-1431.
Yang C P, Zhang K S, Hu Z H. Numerical simulation study on the cause of ellipse generation in two-roll cross wedge rolling the hollow parts with uniform inner diameter[J]. Journal of University of Science and Technology Beijing, 2012, 34(12): 1426-1431.
[25]郑书华, 束学道, 孙宝寿,等. 楔横轧多楔轧制高铁空心车轴壁厚均匀性[J]. 工程科学学报, 2015, 37(5): 648-654.
Zheng S H, Shu X D, Sun B S, et al. Wall thickness uniformity of railway hollow shafts by cross-wedge rolling[J]. Chinese Journal of Engineering, 2015, 37(5): 648-654.
[26]Wong C C, Danno A, Tong K K, et al. Cold rotary forming of thin-wall component from flat-disc blank[J]. Journal of Materials Processing Technology, 2008, 208 (1): 53-62.
[27]Pater Z, Gontarz A, Tomczak J, et al. Producing hollow drive shafts by rotary compression[J]. Archives of Civil and Mechanical Engineering, 2015, 15 (4): 917-924.
[28]徐明达, 代宇春, 赵立伟. 管材内高压成形技术的研究进展[J]. 锻压装备与制造技术, 2009, 44(3): 23-25.
Xu M D, Dai Y C, Zhao L W. Progress in research of tube internal high pressure forming technology[J]. China Metalforming Equipment & Manufacturing Technology, 2009, 44(3): 23-25.
[29]林俊峰, 李峰, 韩杰才, 等. 管件液压成形中加载路径的确定方法研究[J]. 材料科学与技术, 2009, 17(6):840-843.
Lin J F, Li F, Han J C, et al. Optimization of loading paths in tube hydroforming process[J]. Material Science & Technology, 2009, 17(6):840-843.
[30]周鹤, 徐春国, 任广升, 等. 空心轴类零件柔性轧挤复合成形机理的模拟分析[J]. 锻压技术, 2012, 37(3):44-47.
Zhou H, Xu C G, Ren G S, et, al. Numerical simulation analysis of compound forming mechanism of flexible rolling and extrusion for hollow shaft parts[J]. Forging & Stamping Technology, 2012, 37(3):44-47.
[31]郑建. 柔性轧挤复合成形数值模拟及实验研究[D]. 北京: 机械科学研究总院, 2014.
Zheng J. The Numerical Simulation and Experimental Research of Flexible Rolling and Extrusion[D]. Beijing: China Academy of Machinery Science & Technology, 2014.
[32]Neugebauer R, Kolbe M, Class R. New warm forming processes to produce hollow shafts[J]. Journal of Materials Processing Technology, 2001, 119 (1-3): 277-282.
[33]Bartnicki J, Pater Z, Gontarz A. Theoretical analysis of rolling-extrusion process of axi-symmetrical parts[J]. Archives of Civil and Mechanical Engineering, 2008, 8(2): 5-11.
[34]Reimund Neugebauer, Roland Class, Matthias Kolbe, et al. Optimisation of processing routes for cross rolling and spin extrusion[J]. Journal of Materials Processing Technology, 2002, 125(36): 856-862.
[35]Man-soo Jouna, Jangho Leeb, Jae-min Choc, et al. Quantitative study on mannesmann effect in roll piercing of hollow shaft[J]. Procedia Engineering, 2014, 81: 197-202.
[36]Yanling Ma, Yi Qin, Raj Balendra. Forming of hollow gear-shafts with pressure-assisted injection forging (PAIF)[J]. Journal of Materials Processing Technology, 2005, 167 (2): 294-301.
[37]Qin Y, Ma Y, Balendra R. Pressurising materials and process design considerations of the pressure-assisted injection forging of thick-walled tubular components[J]. Journal of Materials Processing Technology, 2004, 150 (1-2): 30-39.
[38]董国疆, 赵长财, 曹秒艳. 轻合金管状构件固体颗粒介质热胀成形方法[P]. 中国:CN201410135402.2, 2016-08-31.
Dong G J, Zhao C C, Cao M Y. Hot bulging of light alloy pipe by solid particle[P]. China: CN201410135402.2, 2016-08-31.
[39]赵长财, 董国疆, 肖宏, 等. 管材固体颗粒介质成形新工艺[J]. 机械工程学报, 2009, 45(8): 255-260.
Zhao C C, Dong G J, Xiao H, et al. Solid granules medium forming technology of pipe[J]. Journal of Mechanical Engineering, 2009, 45 (8): 255-260.
[40]张晖, 费宁忠, 孙华标, 等. 细长厚壁变截面内孔液力挤压装置及方法[P]. 中国:CN201410201714.9, 2015-12-09.
Zhang H, Fei N Z, Sun H B, et al. Hydrostatic extrusion and high pressure forming tool-set and method of variable cross-section long and thin hollow[P]. China: CN201410201714.9, 2015-12-09.
|