网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
液压复合成形技术在三通件上的应用
英文标题:Application of hydraulic compound forming technology for tee part
作者:冯苏乐 徐永超 赵淘 管雅娟 徐爱杰 
单位:上海航天精密机械研究所 哈尔滨工业大学 
关键词:液压复合成形 三通件 液室压力 充液拉深 内高压胀形 
分类号:TG394
出版年,卷(期):页码:2018,43(1):72-77
摘要:

利用液压复合成形技术,对数控铣削加工三通件进行工艺改进,针对充液拉深和内高压胀形阶段建立了力学模型,分析了摩擦系数、拉深比、压边力和胀形力等工艺参数对零件成形的影响。通过对液室压力的数值模拟,得到在40 MPa液压下,充液拉深后零件的壁厚减薄率最小,为27.5%,壁厚最薄处位于凸模圆角区域;并通过液压复合成形工艺,试制出内径为SR90 mm的三通件,成形的三通件翻边处最小壁厚为1.59 mm,通过了液压强度、气密性能等可靠性考核,实现了1Cr18Ni9Ti不锈钢球形三通件的整体成形。研究表明,采用液压复合成形技术,三通件的研制周期缩短了8天,材料利用率提高了60%以上。

The technology improvement of tee part produced by CNC milling was conducted by hydraulic compound forming technology. Then, the mechanical models of hydromechanical deep drawing and internal high pressure bulging were established, and the influences of friction coefficient, drawing ratio, blank holder force and bulging force, etc. on the forming of part were analyzed. When the hydraulic pressure increased to 40 MPa, the thinning rate of wall thickness after hydromechanical deep drawing was the minimum of 27.5% at the punch corner by the numerical simulation of hydraulic pressure. Furthermore, the tee part with a inner diameter of SR90 mm was formed by hydraulic compound forming technology, and the minimum wall thickness in the flange of forming tee part was 1.59 mm. Thus, the integral forming of spherical tee part of stainless steel 1Cr18Ni9Ti was realized by assessing the reliability of hydraulic strength and air tightness. The results show that the hydraulic compound forming technology reduces the production cycle of tee part for eight days, and the material utilization is improved up to 60%.

基金项目:
上海航天局型号工艺攻关项目(716A-YZ)
作者简介:
作者简介:冯苏乐(1987-),男,硕士,工程师,E-mail:fengsuleshikeke@sina.com
参考文献:

[1]Koc MAltan T. An overall review of the tube hydroformingTHF technology[J]. Journal of Materials Processing Technology20011083):384-393.


[2]包文兵,徐雪峰,戴龙飞,等. 等径三通管整体液压成形壁厚分布规律[J]. 锻压技术,2017424):91-95.


Bao W BXu X FDai L Fet al. Wall thickness distribution in integral hydroforming for equal T-shaped tube[J]. Forging & Stamping Technology2017424):91-95.


[3]陈浩,刘钢,苑世剑,等. 薄壁Y型三通管内高压成形及补料比的影响[J]. 航天制造技术,2009,4):1-4.


Chen HLiu GYuan S Jet al. Investigation of hydroforming thin-walled Y-shaped three-way tubes and effects of axial feed ratio[J]. Aerospace Manufacturing Technology2009,(4):1-4.


[4]王孝培. 实用冲压手册[M]. 北京:机械工业出版社,2002.   


Wang X P. Practical Stamping Manual[M]. BeijingChina Machine Press2002.


[5]胡世光.板料冷压成形的工程解析[M]. 北京:北京航空航天大学出版社,2004.


Hu S G. Engineering Analysis of Cold Forming for Sheet Metal[M]. BeijingBeijing University of Aeronautics and Astronautics Press2004.


[6]Xu Y CLiu XLiu X J, et al. Deformation and defects in hydroforming of 5A06 aluminum alloy dome with controllable radial pressure[J]. Journal of Central South University of Technology, 200916 (6):887-891.


[7]苑世剑. 现代液压成形技术[M]. 北京:国防工业出版社,2009.


Yuan S J. Modern Hydroforming Technology[M]. Beijing: National Defence Industry Press2009.


[8]陈名涛,肖小亭,刘易凡,等.内压和加载路径对并列双支管内高压成形性的影响[J]. 塑性工程学报,2017245):19-24.


Chen M TXiao X TLiu Y Fet al. Effects of the internal pressure and loading path on hydroforming of the parallel arrangement multi-way tube[J].Journal of Plasticity Engineering 2017 24 5): 19-24.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9