网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
新型液压双边滚切剪机构数学模型的建立与验证
英文标题:Establishing and verification of mathematical model for new hydraulic bilateral rolling shear mechanism
作者:韩贺永 乔永杰 李佳 黄庆学 
单位:太原科技大学 
关键词:空间连杆机构 双边滚切剪 剪切机构 滚动剪切 运动学分析 
分类号:TG333.2+1
出版年,卷(期):页码:2018,43(1):124-128
摘要:

基于空间复合连杆机构的运动学分析理论,提出一种新型液压双边滚切剪剪切机构的滚动剪切数学模型,以纯滚动剪切为目标,设定导向杆与刀架的铰接点为基础点,分别建立剪切机构的正、逆运动学数学模型,结合3-RRR平面并联机构的运动学研究方法,应用两个坐标系间的位置关系,确定伺服液压缸与上刀架两者之间的过渡矩阵,进而推导出伺服液压缸位移与上刀架位姿之间的数学模型,实现了通过控制伺服液压缸活塞杆的位移实时调整上刀架的位姿功能,提高了剪切机构系统的运动控制精度。通过调整剪切机构数学模型的参数,反算获得滚动剪切不同步长钢板时伺服液压缸的位移参数,以便提高剪切机构纯滚动剪切质量,同时也为剪切设备提供了模型参数设计指导。

The mathematical model of shear mechanism for a new hydraulic bilateral rolling shear was put forward based on the kinematics theory of a hybrid spatial linkage mechanism, and the forward and inverse kinematics models of shear mechanism were established taking the pure rolling shear as the goal and the hinge points between guide rod and blade as the base points. Then, the transition matrix between servo hydraulic cylinder and upper blade was determined combining with the kinematic research method of 3-RRR planar parallel mechanisms and applying the positional relationship between two coordinate systems, and the mathematical model between the displacement of servo hydraulic cylinder and the position and posture of upper blade was deduced. Therefore, the position and posture of upper blade were adjusted by controlling the displacement of piston rod for the servo hydraulic cylinder in real time, and the motion control precision of the shearing mechanism system was improved. Furthermore, when the steel plate was sheared at different step sizes,the displacement parameters of servo hydraulic cylinder were obtained by inverse calculating based on adjusting parameters of the mathematical model for shear mechanism, and the quality of pure rolling shear for shear mechanism was improved. Thus, the model parameters were provided for the design of shearing equipment.

基金项目:
国家自然科学基金资助项目(51505315)
作者简介:
作者简介:韩贺永(1982-),男,博士,副教授,E-mail:277921887@qq.com;通讯作者:乔永杰(1990-),男,硕士研究生,E-mail:1508054163@qq.com
参考文献:

[1]黄庆学. 轧钢机械设计[M]. 北京:冶金工业出版社,2007.


Huang Q X. Mechanical Design of Rolled Steel [M]. Beijing: Metallurgical Industry Press, 2007.


[2]Han H Y, Huang Q X, Wang J, et al. The analysis of new hydraulic rolling shear servo system dynamic characteristics[J]. Journal of Engineering Manufacture, 2013, 227(3): 453-459.


[3]楚志兵, 黄庆学, 马立峰, . 滚切式双边剪连杆机构的动力学仿真及实验研究[J]. 四川大学学报: 工程科学版, 2011, 43(1): 247-252.


Chu Z B, Huang Q X, Ma L F, et al. Experimental study and simulation of kinetics on linkage structure of rolling-cut bilateral shear [J]. Journal of Sichuan University: Engineering Science Edition, 2011, 43 (1): 247-252.


[4]马立峰, 王刚, 黄庆学, . 复合连杆机构复演滚动轨迹的特性研究[J]. 中国机械工程, 2013, 24(7): 877-881.


Ma L F, Wang G, Huang Q X, et al. Research on properties of compound linkage recapitulation rolling trace [J]. China Mechanical Engineering, 2013, 24 (7): 877-881.


[5]许允斗, 姚建涛, 金林茹, . 考虑杆件空间复合弹性变形的过约束并联机构受力分析方法[J]. 机械工程学报, 2015, 51(7): 53-60.


Xu Y D, Yao J T, Jin L R, et al. Method for force analysis of the overconstrained parallel mechanism considering the link′s spatial composite elastic deformations[J]. Journal of Mechanical Engineering, 2015, 51 (7): 53-60.


[6]Jiang L F, Lan T, Chao Y, et al. Analyzing and modeling on coordinate conversion errors of airborne lidar detection data [A]. Proceedings of SPIE-The International Society for Optical Engineering[C]. USA, 2009.


[7]刘钊鹏, 苏啸, 李滨城. 基于MATLAB/ADAMS的平面三自由度并联机构的运动学和动力学分析及控制的初步设计[J]. 机电工程技术, 2012, 41(6): 54-59.


Liu Z P, Su X, Li B C. Kinematics and dynamics analysis and preliminary control design of a planar 3-DOF parallel mechanism based on MATLAB/ADAMS[J]. Mechanical & Electrical Engineering Technology, 2012, 41 (6): 54-59.


[8]梁青, 宋宪玺, 周烽, . 基于ADAMS的双足机器人建模与仿真[J].计算机仿真,2010, 27(5): 162-165.


Liang Q, Song X X, Zhou F, et al. Modeling and simulation of biped robot based on ADAMS[J]. Computer Simulation, 2010, 27 (5): 162-165.


[9]Han H YLi H Z, Li Jet al. Analyzing nonlinear system stability of a new hydraulic bilateral rolling shear[J]. ISIJ International2016, 56(10): 1789-1795.


[10]Lee S W, Kwon K S, Park I C. Pipelined cartesian-to-polar coordinate conversion based on SRT division [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(8): 680-684.


[11]Huang Q X, Li J, Li H Z, et al. Stability analysis of mathematical model for new hydraulic bilateral rolling shear [J]. ISIJ International2016, 56(2): 288-293.


[12]张丽英,贾增耀,苏俭华,.液压滚切剪在不同剪切速度下剪切过程数值模拟与实验研究[J]. 塑性工程学报,2016, 235: 209-215.


Zhang L Y, Jia Z Y, Su J H, et al. Simulation and experimental research on cutting process of hydraulic rolling-cut shear with different cutting speeds[J]. Journal of Plasticity Engineering, 2016, 235: 209-215.


[13]李继威,胡成亮, 赵震,等.剪切速度对棒料剪切断面质量的影响[J]. 锻压技术,2016, 418: 122-126.


Li J W, Hu C L, Zhao Z, et al. Influence of shearing speed on section quality for bar shearing[J]. Forging & Stamping Technology, 2016, 418: 122-126.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9