网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于有限元模拟的平行双通道挤压与单通道转角挤压的仿真比较
英文标题:Simulation comparison of parallel double-channel extrusion and single-channel angular extrusion based on finite element analysis
作者:段红燕 杨勐 
单位:兰州理工大学 
关键词:奥氏体不锈钢 塑性变形 单通道挤压 平行双通道挤压 数值模拟 
分类号:TG376
出版年,卷(期):页码:2018,43(3):83-88
摘要:
以比较两类模具对挤压效果影响为目的,通过Deform-3D塑性变形模拟软件分别对两道次下单通道ECAP和单道次平行双通道ECAP过程进行了模拟,分析了挤压冲头的载荷行程曲线和试样的等效应力应变情况。结果表明,转角区域45°斜截面产生剪切变形,随着挤压的推进,试样边缘小面积高应变区会不断扩充直到形成新的平面应变区。尽管平行双通道挤压理论上相当于单通道挤压两道次的效果,但前者比后者提高了6倍轴向应变量,相应地平行双通道挤压后的试样总体等效应变比两道次单通道挤压提升了约35%,从而获得了更好的应变强化效果,同时凸模载荷提升了2倍,达到了255 kN,对模具材料强度有更高的要求。
For comparison of extrusion effect made by two kinds of dies, the extrusion processes of two-pass single-channel ECAP and one-pass parallel double-channel ECAP were simulated respectively by Deform-3D. The load-stroke curves of extrusion punch and equivalent stress and strain of samples were analyzed. The results show that shear deformation takes place in 45°angular district, and small area and high-strain sections on sample edges expand constantly until the new plane strain sections emerge with the extrusion. Even though the effects of parallel double-channel extrusion and two-pass single-channel extrusion are the same in theory, the former is improved six times in axial strain deformation than the latter, and correspondingly the total effective strain increases about 35%. Therefore, a better strain hardening effect is obtained. Meanwhile, load of punch increases twice up to 255 kN, whicch results in a higher requirement on die material strength.
基金项目:
地区科学基金项目资助(51665028)
作者简介:
作者简介:段红燕(1978-),女,博士,副教授 E-mail:duanhy@lut.cn 通讯作者:杨勐(1992-),男,硕士研究生 E-mail:1712417179@qq.com
参考文献:

[1] 韩飞,彭大暑,林高用.304奥氏体不锈钢加工硬化及退火软化的研究
[D].长沙:中南大学,2004.
Han F,Peng D S,Lin G Y. Work Hardening and Anneal Softening Investigation on 304 Austenitic Stainless Steel
[D].Changsha: Central South University,2004.

[2] Segal V M, Reznikov V I, Drobyshevskii A E, et al. Plastic metal working by simple shear
[J]. Izvestia Akademii nauk SSSR Metally, 1981, (1):115-123.

[3] 郭廷彪,丁雨田,胡勇,等.等通道转角挤压(ECAP)工艺的研究进展
[J].兰州理工大学学报,2008,34(6):19-24.
Guo T B,Ding Y T,Hu Y,et al. Research progressing of technology of equal-channel angular pressing (ECAP)
[J].Journal of Lanzhou University of Technology,2008,34(6):19-24.

[4] 雷力明,黄旭,段锐,等.等通道转角挤压工艺的研究进展
[J].材料工程,2009,(5):76-80.
Lei L M, Huang X, Duan R, et al. Progress in equal channel angular extrusion process
[J]. Journal of Materials Engineering,2009,(5):76-80.

[5] 郑志军.ECAP制备的块体纳米晶304不锈钢的组织演变、力学性能与腐蚀性为
[D].广州:华南理工大学,2012.
Zheng Z J. Microstructure Evolution, Mechanical Property and Corrosion Behaviour of Bulk Nanocrystalline 304 Stainless Steel by Equal-channel Angular Pressing
[D].Guangzhou: South China University of Technology,2012.

[6] 郑志军,高岩.304不锈钢在ECAP过程中形变诱发马氏体的定量计算
[J].材料工程,2008,(10):137-141.
Zheng Z J, Gao Y. Quantitative measurement of deformation-induced martensite during ECAP of 304 stainless steel
[J].Journal of Materials Engineering,2008,(10):137-141.

[7] 陈国星,高岩.等径角挤压法(ECAP)制备块体超细晶奥氏体不锈钢的工艺及性能
[D].广州:华南理工大学,2010.
Chen G X, Gao Y. Investigation on the Process and Performance of Bulk Ultrafine Grained Austenitic Stainless Steel by Equal Channel Angular Pressing
[D].Guangzhou: South China University of Technology,2010.

[8] 谢贤龙,王经涛,王荣山.等径角变形优化奥氏体不锈钢性能的研究
[D].南京:南京理工大学,2013.
Xie X L, Wang J T, Wang R S. Investigation on Improvement of Properties of an Austenitic Stainless Steel by Equal Channel Angular Pressing
[D].Nanjing: Nanjing University of Science & Technology,2013.

[9]Iwahashi Y, Horita Z, Nemoto M, et al. The process of grain refinement in equal-channel angular pressing
[J]. Acta Materialia, 1998, 46(9):3317-3331.

[10] Djavanroodi F, Omranpour B, Ebrahimi M, et al. Designing of ECAP parameters based on strain distribution uniformity
[J].Progress in Natural Science: Materials International,2012, 22(5):452-460.

[11]张豪,夏琴香,方铭,等. 201不锈钢形变诱发马氏体相变特性
[J].锻压技术,2017,42(1):105-110.
Zhang H,Xia Q X,Fang M,et al. Research on the properties of transformation induced by martensite deformation of stainless steel 20
[J].Forging & Stamping Technology,2017,42(1):105-110.

[12]王克平,赵西城.ECAP模具结构改进与设计
[J].金属铸锻焊技术,2009,38(1):144-149.
Wang K P, Zhao X C. Design and improvement of die for ECAP
[J]. Casting Forging Welding Hot Working Technology,2009,38(1):144-149.

[13]李贝,柴跃生.AZ31镁合金变通道转角挤压数值模拟
[D].太原:太原科技大学,2012.
Li B, Chai Y S. Numerical Simulation on AZ31 Magnesium Alloy by Changing Channel Angular Press
[D].Taiyuan: Taiyuan University of Science & Technology,2012.

[14] 王裕,梁伟.等通道转角挤压的有限元模拟及应用
[D].太原:太原科技大学,2012.
Wang Y, Liang W. Finite Element Simulation and Application of Equal Channel Angular Extrusion
[D].Taiyuan: Taiyuan University of Science & Technology, 2012.

[15] 陈文杰,周清,邓竹君,等.基于Normalized C &L准则的ECAP裂纹萌生趋势的数值模拟
[J].锻压技术,2010,35(5):159-163.
Chen W J,Zhou Q,Deng Z J,et al. Numerical simulation of crack initiation trends during ECAP based on Normalized Cockcroft & Latham ductile fracture criterion
[J].Forging & Stamping Technology,2010,35(5):159-163.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9