网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
6061铝合金粉末冷压成形本构模型
英文标题:Constitutive model of cold compaction forming for aluminum alloy 6061 powder
作者:王斌 黄尚宇 周梦成 雷雨 孙世民 
单位:(武汉理工大学 材料科学与工程学院 湖北 武汉 430070) 
关键词:6061铝合金粉末  压制成形  本构模型  模拟仿真  二次开发 
分类号:TF121
出版年,卷(期):页码:2018,43(5):0-0
摘要:

 在粉末压制过程中,材料的本构方程表征着粉体的变形机理,是用数值模拟方法研究、分析粉末压制过程的基础,因此,建立粉末压制本构方程对研究铝合金粉末压制成形规律、优化模具设计及工艺参数具有重要意义。通过对6061铝合金粉末进行单轴压缩、径向压缩(巴西圆盘实验)和模压实验,建立了相关材料参数随相对密度的变化规律,成功建立了DruckerPrager Cap本构模型,并基于 Abaqus仿真软件二次开发用户子程序USDFLD,添加了粉体材料密度场下6061铝合金粉末的模型参数,对铝合金粉末压制过程进行了数值模拟分析,通过压制力、位移曲线和相对密度分布结果验证了6061铝合金粉末冷压DPC本构模型的正确性。致密度在ρ=0.75~0.84范围内,仿真精度较高,即修正的DPC模型能更为准确地描述6061铝合金粉末的后期压制行为。

 In the process of powder compacting, the constitutive equation of material characterizing the deformation mechanism of powder is the basis of researching and analyzing on powder compaction process by numerical simulation method, so the established powder compaction constitutive equation is of great significance to research the rules of powder compaction forming for aluminum alloy and optimize the mold design and process parameters. Through uniaxial compression, radial compression (Brazilian disc experiment) and die compaction experiment for aluminum alloy 6061 powder, the rules of relevant material parameters changing with relative density were obtained and the Drucker-Prager Cap constitutive model was successfully established. By adding model parameters of aluminum alloy 6061 powder in density field of powder material,the simulation analysis of compaction process for aluminum alloy 6061 powder was carried out by secondary development user subroutine USDFLD of Abaqus simulation software, and the correctness of cold compaction DPC constitutive model for aluminum alloy 6061 powder was verified by the results of pressing force, displacement curve and relative density distribution. When the density is in the range of ρ=0.75-0.84, the simulation precision is high, that is, the modified DPC model can more accurately describe the late suppression behavior of aluminum alloy 6061 powder.

基金项目:
国家自然科学基金资助项目(51475345)
作者简介:
作者简介:王斌(1993-),男,硕士研究生 Email:15527455137@163.com 通讯作者:黄尚宇(1963-),男,硕士,教授 Email:huangshy@whut.edu.cn
参考文献:

 
[1]陈梦婷,石建军,陈国平,等.粉末冶金发展状况
[J].粉末冶金工业,2017,27(4):66-72.


Chen M T,Shi J J,Chen G P, et al. Powder metallurgy development status
[J].Powder Metallurgy Industry, 2017, 27(4): 66-72.


[2]曹勇家,钟海林,郝权,等.粉末冶金生产工艺的两大发展
[J]. 粉末冶工业,2011,21(1):45-53.

Cao Y J, Zhong H L, Hao Q, et al. Two major developments in the powder metallurgical production process
[J] . Powder Metallurgy Industry, 2011, 21(1): 45-53.


[3]Biswas K. Comparison of various plasticity models for metal powder compaction processes
[J]. Journal of Materials Processing Technology,2005,166(1):107-115.


[4]郭彪. 铁基材料粉末锻造及致密化成形技术研究
[D].成都:西南交通大学,2012.

Guo B. Research on Forging and Densification Forming Technology of Ferrobased Materials
[D].Chengdu: Southwest Jiaotong University, 2012.


[5]Kyung Hun,Jung Min,Byung Min,et al. Densification simulation of compacted Al powders using multiparticle finite element method
[J]. Transactions of Nonferrous Metals Society of China, 2009,19(1):68-75.


[6]Harthong B, Jérier J F, Dorémus P, et al. Modeling of highdensity compaction of granular materials by the discrete element method
[J].International Journal of Solids & Structures, 2009,46(18):3357-3364.


[7]Rahman M M, Ariffin A K, Nor S S M. Development of a finite element model of metal powder compaction process at elevated temperature
[J]. Applied Mathematical Modelling, 2009,33(11): 4031-4048.


[8]Shin H,Kim J B. Physical interpretations for cap parameters of the modified DruckerPrager cap model in relation to the deviator stress curve of a particulate compact in conventional triaxial testing
[J]. Powder Technology,2015,280(10):94-102. 


[9]Krok A, GarciaTrianes P,Peciar M,et al. Finite element analysis of thermomechanical behavior of powders during tableting
[J]. Chemical Engineering Research & Design,2016,110:141-151.


[10]周蕊.粉末冶金压坯残余应力与裂纹损伤研究
[D].天津:天津大学,2013.

Zhou R. Study on Residual Stress and Crack Damage of Powder Metallurgical Compaction Billet
[D]. Tianjin: Tianjin University, 2013.


[11]Zhou M C,Huang S Y,Hu J H, et al. A densitydependent modified DruckerPrager Cap model for die compaction of Ag57.6Cu22.4Sn10In10 mixed metal powders
[J].Powder Technology,2017,305:183-196.


[12]Almansttter J. A modified DruckerPrager cap model for finite element simulation of doped tungsten powder compaction
[J]. Int. Journal of Refractory Metals & Hard Materials, 2015,50:290-297.


[13]周洁,陆建生,左孝青,等.铝粉末压制过程有限元模拟研究
[J].云南冶金,2005,34(5):47-51.

Zhou J, Lu J S, Zuo X Q, et al. Finite element simulation study of aluminum powder pressing process
[J]. Yunnan Metallurgy, 2005, 34(5): 47-51.


[14]Huang F, An X Z, Zhang Y X, et al. Multiparticle FEM simulation of 2D compaction on binary Al/SiC composite powders
[J]. Powder Technology,2017,314:39-48.


[15]郑欣,王广海,陈建,等. 6061铝合金真空钎焊技术的发展
[J]. 轻合金加工技术,2014,42(1):8-12.

Zheng X, Wang G H, Chen J, et al. Development of vacuum brazing technology for 6061 aluminum alloy
[J]. Light Alloy Processing Technology, 2014, 42(1): 8-12.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9