网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
TC18钛合金热压缩过程峰值应力及动态软化本构模型
英文标题:Peak stress and dynamic softening constitutive model of titanium alloy TC18 during hot compression
作者:门正兴 周杰 郑金辉 马亚鑫 唐越 
单位:成都航空职业技术学院 重庆大学 
关键词:TC18钛合金 热压缩 峰值应力 本构模型 软化因子 
分类号:TG316
出版年,卷(期):页码:2018,43(6):129-133
摘要:

为准确预测TC18钛合金热模锻成形过程中金属流动规律,在温度为868~908 ℃、应变速率为0.001~1 s- 1以及最大应变为0.7条件下,采用Gleeble-1500热模拟实验机对TC18钛合金进行等温等应变速率热压缩实验,得到材料在相变点附近的应力应变曲线;通过线性拟合方法得到TC18钛合金Arrhenius峰值应力本构模型,用于TC18钛合金热塑性变形过程中金属流动规律的宏观分析及最大载荷的预测;通过多元非线性拟合方法得到TC18钛合金加入软化因子的Fields-Backofenb本构模型,用于材料热塑性变形过程中金属流动规律的微观分析。结果表明,在实验温度及应变速率范围内,TC18钛合金Arrhenius峰值应力模型以及Fields-Backofen模型预测值均接近实验值。

In order to accurately predict the metal flow law during the hot die forging process of titanium alloy TC18, hot compression experiments with equal temperature and equal strain rate at temperature 868-908 ℃,strain rate 0.001-1 s-1 and maximum strain 0.7 were conducted by thermal simulation machine Gleeble-1500. The  stress-strain curves near the transformation point of material were obtained. Then, the Arrhenius peak stress constitutive model of TC18 was obtained by linear fitting method to analyze metal flow in macro and predict the maximum forming load during thermoplastic deformation process of TC18. The Fields-Backofen constitutive model of TC18 with addition of softening factor was obtained by multivariate nonlinear fitting method to analyze metal flow in micro during the thermoplastic deformation process. The results show that the predicted values of the Arrhenius peak stress model and the Fields-Backofen model are close to the experimental values within the range of experimental temperature and strain rate.

基金项目:
国家自然科学基金面上项目(51275543) ;四川省教育厅科研资助项目 (172B0035)
作者简介:
门正兴(1980-),男,博士,副教授;Email:amen1980@163.com
参考文献:


[1]赵永庆,洪权,葛鹏.钛及钛合金金相图谱
[M].长沙:中南大学出版社,2011.


Zhao Y Q, Hong Q, Ge P. Metallographic Atlas of Titanium and Titanium Alloys
[M]. Changcha: Central South University Press, 2011.



[2]冉春,陈鹏万,李玲,等. 中高应变率条件下TC18钛合金动态力学行为的实验研究
[J]. 兵工学报, 2017,38(9):1723-1728.


Ran C,Chen P W,Li L,et al. Experimental research on dynamic mechanical behavior of TC18 titanium alloy under medium and high strain rates
[J]. Acta Armamentarii, 2017,38(9):1723-1728.



[3]贾宝华,刘思勇,李革. 国内TC18钛合金本构关系研究进展
[J]. 钛工业进展,2017,34(4):9-12.


Jia B H,Liu S Y,Li G. Research progress on constitutive relation of TC18 titanium alloy in China
[J]. Titanium Industry Process, 2017, 34(4):9-12.



[4]周晓舟,易丹青,刘会群,等. 显微组织对TC18钛合金高温力学性能的影响
[J]. 热加工工艺,2016,45(6):98-101,105.


Zhou X Z, Yi D Q, Liu H Q,et al. Effects of microstructure on high temperature mechanical properties of TC18 titanium alloy
[J]. Hot Working Technology,2016,45(6):98-101+105.



[5]李峰. TC18钛合金锻件生产工艺研究
[D]. 哈尔滨:哈尔滨工业大学,2016.


Li F. TC18 Titanium Alloy Forgings Production Technology Research
[D]. Harbin: Harbin Institute of Technology, 2016.



[6]Zener C, Hollomon H. Effect of strainrate upon the plastic flow of steel
[J]. Journal Application Physics,1944,15(l):22-27.



[7]Qu F S, Zhou J, Liu X G, et al. Constitutive equation and processing map of thermal deformation TC18 titanium alloy
[J]. Rare Metal Materials and Engineering,2014,43(1):120-124.



[8]Mirzadeh H. Constitutive modeling and prediction of hot deformation flow stress under dynamic recrystallization conditions
[J]. Mechanics of Materials, 2015, 85:66-79.



[9]徐杰,肖铁忠,黄娟. TC18钛合金等高温压缩过程的组织性能
[J].锻压技术,2017,42(1):111-115.


Xu J,Xiao T Z,Huang J. Microstructure and properties of isothermal high-temperature compression process for titanium alloy TC18
[J].Forging & Stamping Technology,2017,42(1):111-115.



[10]邱霖,唐建敏,刘洪光. 基于热拉伸试验的DP590高强钢变形本构关系及热加工图
[J].锻压技术,2017,42(1):121-125.


Qiu L,Tang J M,Liu H G. Constitutive relationship and hot processing pattern of highstrength steel DP590 based on hot tensile test
[J].Forging & Stamping Technology,2017,42(1):121-125.



[11]李先梦,湛利华,申儒林,等. 2A12硬铝合金热拉伸流变行为及本构建模
[J]. 锻压技术,2017,42(4):159-164.


Li X M,Zhan L H,Shen R L,et al. Hot tensile flow behavior and constitutive model of aluminum alloy 2A12
[J]. Forging & Stamping Technology,2017,42(4):159-164.



[12]Liu L, Ding H. Study of the plastic flow behaviors of AZ91 magnesium alloy during thermomechanical processes
[J]. Journal of Alloys & Compounds, 2009, 484(1):949-956.



[13]Jia W, Xu S, Le Q, et al. Modified FieldsBackofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation
[J]. Materials & Design, 2016, 106:120-132.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9