[1]杨合, 詹梅, 李甜, 等. 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10):2534-2550.
Yang H, Zhan M, Li T, et al. Advances in spinning of aluminum alloy largesized complicated thinwalled shells[J]. Chinese Journal of Nonferrous Metals, 2011, 21(10):2534-2550.
[2]李奎, 郎利辉, 吴磊, 等. 锥形薄壁零件多道次充液成形方法[J]. 塑性工程学报, 2016, 23(4):36-41.
Li K, Lang L H, Wu L, et al. Multistage hydroforming method for conical thinwalled parts[J]. Journal of Plasticity Engineering, 2016, 23(4):36-41.
[3]樊东黎. 热处理技术手册[M]. 北京:化学工业出版社, 2009.
Fan D L. Manual of Heat Treatment Technology[M]. Beijing: Chemical Industry Press, 2009.
4]Denis S, Gautier E, Simon A, et al. Stressphasetransformation interactionsbasic principles, modelling, and calculation of internal stresses[J]. Metal Science Journal, 1985, 1(10):805-814.
[5]王树松. 30Cr3钢形变热处理工艺研究[J]. 新技术新工艺, 2006, (3):64-66.
Wang S S. 30Cr3 steel rocket engine shell ausforming[J]. New Technology & New Process, 2006, (3):64-66.
[6]Li Z, Ferguson B L, Freborg A M. Modeling application to reduce distortion of a carburized and quenched steel gear[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.
[7]Reich M M, Kessler O. Numerical and experimental analysis of residual stresses and distortion in different quenching processes of aluminum alloy profile[A].International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.
[8]王占军, 张笑宇, 李贤君, 等. 铲刃板压力淬火过程的数值模拟与变形分析[J]. 材料导报, 2016, 30(s2):185-189.
Wang Z J, Zhang X Y, Li X J, et al. Numerical simulation and analysis of deformation cutting edge during pressure quenching process[J]. Materials Review, 2016, 30(s2):185-189.
[9] Simsir C, Gür C H. A review on modeling and simulation of quenching[J]. Journal of Astm International, 2009, 6(2):117-156.
[10]Simsir C. ASM Handbook 4B, Chapter: Modeling and Simulation of Steel Heat Treatment: Prediction of Microstructure, Distortion, Residual Stresses and Cracking[M]. US:ASM International,2014.
[11]Canale Lauralice C F, Totten George. Overview of distortion and residual stress due to quench processing-Part I: Factors affecting quench distortion[J]. International Journal of Materials & Product Technology, 2005, 24(1-4):4-52.
[12]Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15):2103-2118.
[13]Wang L, Strangwood M, Balint D, et al. Formability and failure mechanisms of AA2024 under hot forming conditions[J]. Materials Science & Engineering A, 2011, 528(6):2648-2656.
[14]Mohamed S Mohamed S, Foster Alistair D, Lin J G, et al. Investigation of deformation and failure features of AA6082: Experimentation and modelling[J]. International Journal of Machine Tools & Manufacture, 2012, 53(1):27-38.
[15]凡晓波. 6A02铝合金板材热成形-淬火一体化工艺强化机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012.
Fan X B. Research on Strengthening Mechanism of Integrated Process of Quenching-Hot Forming for Aluminium 6A02 Sheet[D]. Harbin:Harbin Institute of Technology, 2012.
[16]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics,1983,21:541-548.
[17]Queen H J M,Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322:42-63.
[18]Bodner S R, Partom Y. Constitutive equations for elasticviscoplastic strainhardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389.
[19]Zerilli F J, Armstrong R W. Dislocationmechanicsbased constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
[20]杨夏炜. 铝合金大型复杂构件热处理过程的多场耦合模型与变形预报[D]. 哈尔滨:哈尔滨工业大学, 2013.
Yang X W. Multifield Coupling Models and Deformation Prediction of Aluminum Alloy Large Complicated Workpieces During Heat Treatment[D]. Harbin:Harbin Institute of Technology, 2013.
[21]李辉平. 淬火过程有限元模拟关键技术及工艺参数优化的研究[D]. 济南:山东大学, 2005.
Li H P. Research on Key Technologies of Finite Element Simulation and Parameter Optimization for Quenching Processes[D]. Jinan: Shandong University, 2005.
[22]Bardelcik A, Worswick M J, Winkler S, et al. A strain rate sensitive constitutive model for quenched boron steel with tailored properties[J]. International Journal of Impact Engineering, 2012, 50: 49-62.
[23]Wang W, Wang G, Hu Y, et al. Temperaturedependent constitutive behavior with consideration of microstructure evolution for asquenched AlCuMn alloy[J]. Materials Science & Engineering A, 2016, 678: 85-92.
[24]邵颖慧. 热流密度和材料物性对零件传热的影响[D]. 杭州,浙江大学, 2013.
Shao Y H. Influence of Heat Flux and Material Properties on Heat Transfer of Parts[D]. Hangzhou: Zhejiang University, 2013.
[25]何成, 何欢, 裴锦华, 等. 考虑温变效应的热物性参数RBF辨识方法[J]. 工程力学, 2015, 32(1):205-212.
He C, He H, Pei J H, et al. Identification of temperaturedepending thermophysical parameters based on RBF method[J]. Engineering Mechanics, 2015, 32(1):205-212.
[26]Ju D Y. Effect of bubbling boiling and breaking of steam film on heat transfer coefficient in stirring quenching process[A].Proceedings of the Fourth International Conference on Quenching and Control of Distortion[C].Beijing,2003.
[27]Buczek A, Telejko T. Investigation of heat transfer coefficient during quenching in various cooling agents[J]. International Journal of Heat & Fluid Flow, 2013, 44(4):358-364.
[28]Ikkene R, Koudil Z, Mouzali M. Cooling characteristic of polymeric quenchant: Calculation of HTC and prediction of microstructure and hardness[J]. Journal of Materials Engineering & Performance, 2014, 23(11):1-12.
[29]Caron E J F R, Daun K J, Wells M A. Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures[J]. International Journal of Heat & Mass Transfer, 2014, 71(1):396-404.
[30]常国光, 刘宪冬, 陈春焕, 等. GCr15钢淬火过程换热系数的计算[J]. 材料导报, 2013, 27(s1):120-122.
Chang G G, Liu X D, Chen C H, et al. Calculation of the heat transfer coefficient of GCr15 steel in quenching process[J]. Materials Review, 2013, 27(s1):120-122.
[31]曹欣, 孙志超, 杨合. 基于DEFORM反传热模型表面换热系数的确定[J]. 塑性工程学报, 2013, 20(2):130-135.
Cao X, Sun Z C, Yang H. Determination of surface heat transfer coefficient via inverse heat transfer model based on DEFORM software[J]. Journal of Plasticity Engineering, 2013, 20(2):130-135.
[32]潘健生, 王婧, 顾剑锋. 热处理数值模拟进展之一——扩展求解域热处理数值模拟[J]. 金属热处理, 2012, 37(1):7-13.
Pan J S, Wang J, Gu J F. One of progress in heat treatment numerical simulation-Numerical model of heat treatment with expanded solution domain[J]. Heat Treatment of Metals, 2012, 37(1):7-13.
[33]Kopun R, kerget L, Hriberek M, et al. Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures[J]. Applied Thermal Engineering, 2014, 65(1-2):74-84.
[34]Li H P, Zhao G Q, Niu S T, et al. FEM simulation of quenching process and experimental verification of simulation results[J]. Materials Science & Engineering A, 2007, 452-453(24):705-714.
[35]Hao X, Gu J F, Chen N, et al. 3-D numerical analysis on heating process of loads within vacuum heat treatment furnace[J]. Applied Thermal Engineering, 2008, 28(14):1925-1931.
[36]Yang X W, Zhu J C, Lai Z H, et al. Finite element analysis of quenching temperature field, residual stress and distortion in A357 aluminum alloy large complicated thinwall workpieces[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1751-1760.
[37]Narazaki M, Kogawara M, Shirayori A, et al. Experimental and simulation studies on asymmetrical quench distortion of long thin steel parts[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.
[38]梁旭坤, 陈磊, 胡永会. 厚板非对称淬火变形的仿真研究[J]. 热加工工艺, 2013, 42(20):202-203.
Liang X K, Chen L, Hu Y H. Simulation study on asymmetrical quenching deformation of thick plate[J]. Hot Working Technology, 2013, 42(20):202-203.
[39]王朋. ZL205A大型薄壁筒形件变形预测及控制[D]. 哈尔滨: 哈尔滨工业大学, 2014.
Wang P. The Prediction and Control of Deformation of ZL205A Large Shell Cylindrical Castings[D]. Harbin: Harbin Institute of Technology, 2014.
[40]黄树海, 赵祖德, 肖远伦, 等. 冷热循环对铝合金锥形件淬火残余应力和加工变形的影响[J]. 机械工程学报, 2010, 46(14):73-78.
Huang S H, Zhao Z D, Xiao Y L, et al. Influence of thermalcooling cycle on both quenchinginduced residual stress and machininginduced distortion of aluminum coneshaped part[J]. Journal of Mechanical Engineering, 2010, 46(14):73-78.
[41]齐冲. 铝合金圆筒结构淬火残余应力形成及分布规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
Qi C. Research on Formation and Distribution of Quenching Residual Stress of Aluminum Alloy Cylindrical Structure[D]. Harbin: Harbin Institute of Technology, 2015.
[42]陈杰. 套类零件淬火变形分析[J]. 热加工工艺, 2008, 37(10):68-70.
Chen J. Analysis of quenching deformation for case parts[J]. Hot Working Technology, 2008, 37(10):68-70.
[43]Dubal M G P. Salt bath quenching for minimum distortion[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.
[44]孙清汝, 许东, 殷宝森. 湍流式搅拌在控制圆筒形薄壁铝合金淬火尺寸变形中的应用[J]. 金属加工, 2014, (s2):87-89.
Sun Q R, Xu D, Yin B S. The application of turbulent mixing in controlling the deformation of cylindrical thinwalled aluminum alloy quenching[J]. Metal Forming, 2014, (s2):87-89.
[45]Zhou X. Effect comparison of dip quenching and spray quenching heat treatment of heavy forgings used for nuclear power[J]. Heavy Castings & Forgings, 2016, (6): 35-37,52.
[46]贺连芳, 赵国群, 李辉平, 等. 基于响应曲面方法的热冲压硼钢B1500HS淬火工艺参数优化[J]. 机械工程学报, 2011, 47(8):77-82.
He L F, Zhao G Q, Li H P, et al. Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology[J]. Journal of Mechanical Engineering, 2011, 47(8):77-82.
[47]李轩颖, 徐雪峰, 付春林, 等. 某型飞机钛合金钣金件热冲压成形工艺参数优化[J]. 塑性工程学报, 2017, 24(1):92-97.
Li X Y, Xu X F, Fu C L, et al. Optimization of hot stamping process parameters for a certain type of aircraft titanium alloy sheet metal parts[J]. Journal of Plasticity Engineering, 2017, 24(1):92-97.
[48]Wen Y M, Wang B Y, Lin J G, et al. Influence of process parameters on properties of AA6082 in hot forming process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11):2454-2463.
[49]何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形-淬火一体化工艺研究进展[J]. 精密成形工程, 2014, (5):37-44.
He Z B, Fan X B, Yuan S J. Review of hot formingquenching integrated process of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2014, (5):37-44.
[50]Luo X, Totten G E. Distortion control: Quenching apparatus for hardening parts: An overview[J]. MPC, 2014, 3(4): 477-504.
[51]葛瑞荣, 周尚荣, 董平, 等. 用数值模拟方法改进淬火夹具结构和装夹方法以减少淬火畸变[J]. 金属热处理, 2010, 35(4):56-61.
Ge R R, Zhou S R, Dong P, et al. Improved quenching clamp structure and mount method with numerical simulation calculation for reducing quenching distortion[J]. Heat Treatment of Metals, 2010, 35(4):56-61.
[52]卢琛, 张程菘, 富宏亚, 等. ZL205A铝合金大型薄壁件淬火过程模拟与变形控制[J]. 热处理技术与装备, 2016, 37(1):81-85.
Lu C, Zhang C S, Fu H Y, et al. Simulation of quenching process and control of distortion about large thinwall workpiece of ZL205A aluminum alloy[J]. Heat Treatment Technology & Equipment, 2016, 37(1):81-85.
[53]徐建军. 薄曲面钛合金缘条的热处理保形工装研究[D]. 南京:南京航空航天大学, 2016.
Xu J J. Study on Conformal Fixture for Heattreatment of Thin Curved Tialloy Boom[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
[54]Yang X W, Li W, Zhu J C, et al. Numerical study of residual stresses and distortion in quenched large complicated thinwall A357 aluminum alloy workpieces [A]. Proceedings from the 5th International Conference on Thermal Process Modeling and Computer Simulation[C]. Orlando,2014.
[55]牛山廷. 淬火冷却过程三维有限元模拟及工艺参数优化的研究[D]. 济南:山东大学, 2007.
Niu S T. Study on Threedimensional Finite Element Simulation and Optimization of Process Parameters for Quenching Process[D]. Jinan: Shandong University, 2007.
|