网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
薄壁构件淬火变形调控研究进展
英文标题:Research progress on quenching distortion control for thinwalled components
作者:詹梅 王隽文 樊晓光 闫陆宇 李志欣 
单位:西北工业大学 
关键词:薄壁构件 淬火变形 精确预测 变形调控 本构模型 
分类号:TG156.3
出版年,卷(期):页码:2018,43(7):62-70
摘要:

薄壁构件淬火后容易产生变形,严重影响构件尺寸精度。因此,为了减小薄壁构件淬火不均匀变形,提高尺寸稳定性,综述了实现薄壁构件淬火变形精确预测的方法,探讨了淬火过程热力学本构模型的建立、材料热物性参数的确定以及淬火有限元的建模方法,分析了不同结构特点、材料特性、淬火方式和夹具约束方式对薄壁构件淬火变形行为的影响规律,总结了薄壁构件淬火变形调控方法,并阐述了当下面临的关键难题与挑战,最后预测了薄壁构件淬火变形的发展趋势,提出了多物理场作用下形性一体精确预测方法。本研究对认识和发展薄壁淬火变形调控技术具有重要的指导意义和参考价值。

Thin-walled components are easily distorted after quenching, which seriously affects the dimensional precision of components. Therefore, in order to reduce uneven distortion of thin-walled components and improve its dimensional stability during the quenching process, the methods achieving accurate prediction of quenching distortion were summarized, and the establishment of thermodynamics constitutive model for quenching process, the determination of thermophysical parameters of materials and the modeling method of finite element in the quenching process were discussed. Then, the influences of different structure characteristics, material properties, quenching methods and fixture constraints on quenching distortion behaviors of thin-walled components were analyzed, and the regulation methods of quenching distortion for thin-walled components were summarized. Furthermore, the key problems and challenges at present were also presented, and the development trend of quenching distortion for thin-walled components was predicted. Thus, an accurate prediction method of integration of shape and performance under multi-physical fields was proposed. The research has important guiding significance and reference value for understanding and developing the control technology of quenching distortion for thin-walled components.
 

基金项目:
航天先进制造技术研究联合基金(U1537203);国家杰出青年科学基金(51625505)
作者简介:
詹梅(1972-),女,博士,教授,E-mail:zhanmei@nwpu.edu.cn
参考文献:

[1]杨合, 詹梅, 李甜, . 铝合金大型复杂薄壁壳体旋压研究进展[J]. 中国有色金属学报, 2011, 21(10):2534-2550.


Yang H, Zhan M, Li T, et al. Advances in spinning of aluminum alloy largesized complicated thinwalled shells[J]. Chinese Journal of Nonferrous Metals, 2011, 21(10):2534-2550.


[2]李奎, 郎利辉, 吴磊, . 锥形薄壁零件多道次充液成形方法[J]. 塑性工程学报, 2016, 23(4):36-41.


Li K, Lang L H, Wu L, et al. Multistage hydroforming method for conical thinwalled parts[J]. Journal of Plasticity Engineering, 2016, 23(4):36-41.


[3]樊东黎. 热处理技术手册[M]. 北京:化学工业出版社, 2009.


Fan D L. Manual of Heat Treatment Technology[M]. Beijing: Chemical Industry Press, 2009.


4]Denis S, Gautier E, Simon A, et al. Stressphasetransformation interactionsbasic principles, modelling, and calculation of internal stresses[J]. Metal Science Journal, 1985, 1(10):805-814.


[5]王树松. 30Cr3钢形变热处理工艺研究[J]. 新技术新工艺, 2006, (3):64-66.


Wang S S. 30Cr3 steel rocket engine shell ausforming[J]. New Technology & New Process, 2006, (3):64-66.


[6]Li Z, Ferguson B L, Freborg A M. Modeling application to reduce distortion of a carburized and quenched steel gear[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.


[7]Reich M M, Kessler O. Numerical and experimental analysis of residual stresses and distortion in different quenching processes of aluminum alloy profile[A].International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.


[8]王占军, 张笑宇, 李贤君, . 铲刃板压力淬火过程的数值模拟与变形分析[J]. 材料导报, 2016, 30(s2):185-189.


Wang Z J, Zhang X Y, Li X J, et al. Numerical simulation and analysis of deformation cutting edge during pressure quenching process[J]. Materials Review, 2016, 30(s2):185-189.


[9] Simsir C, Gür C H. A review on modeling and simulation of quenching[J]. Journal of Astm International, 2009, 6(2):117-156.


[10]Simsir C. ASM Handbook 4B, Chapter: Modeling and Simulation of Steel Heat Treatment: Prediction of Microstructure, Distortion, Residual Stresses and Cracking[M]. USASM International2014.


[11]Canale Lauralice C F, Totten George. Overview of distortion and residual stress due to quench processing-Part I: Factors affecting quench distortion[J]. International Journal of Materials & Product Technology, 2005, 24(1-4):4-52.


[12]Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15):2103-2118.


[13]Wang L, Strangwood M, Balint D, et al. Formability and failure mechanisms of AA2024 under hot forming conditions[J]. Materials Science & Engineering A, 2011, 528(6):2648-2656.


[14]Mohamed S Mohamed S, Foster Alistair D, Lin J G, et al. Investigation of deformation and failure features of AA6082: Experimentation and modelling[J]. International Journal of Machine Tools & Manufacture, 2012, 53(1):27-38.


[15]凡晓波. 6A02铝合金板材热成形-淬火一体化工艺强化机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012.


Fan X B. Research on Strengthening Mechanism of Integrated Process of Quenching-Hot Forming for Aluminium 6A02 Sheet[D]. HarbinHarbin Institute of Technology, 2012.


[16]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics198321:541-548.


[17]Queen H J MRyan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A, 2002, 322:42-63.


[18]Bodner S R, Partom Y. Constitutive equations for elasticviscoplastic strainhardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389.


[19]Zerilli F J, Armstrong R W. Dislocationmechanicsbased constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.


[20]杨夏炜. 铝合金大型复杂构件热处理过程的多场耦合模型与变形预报[D]. 哈尔滨:哈尔滨工业大学, 2013.


Yang X W. Multifield Coupling Models and Deformation Prediction of Aluminum Alloy Large Complicated Workpieces During Heat Treatment[D]. HarbinHarbin Institute of Technology, 2013.


[21]李辉平. 淬火过程有限元模拟关键技术及工艺参数优化的研究[D]. 济南:山东大学, 2005.


Li H P. Research on Key Technologies of Finite Element Simulation and Parameter Optimization for Quenching Processes[D]. Jinan: Shandong University, 2005.


[22]Bardelcik A, Worswick M J, Winkler S, et al. A strain rate sensitive constitutive model for quenched boron steel with tailored properties[J]. International Journal of Impact Engineering, 2012, 50: 49-62.


[23]Wang W, Wang G, Hu Y, et al. Temperaturedependent constitutive behavior with consideration of microstructure evolution for asquenched AlCuMn alloy[J]. Materials Science & Engineering A, 2016, 678: 85-92.


[24]邵颖慧. 热流密度和材料物性对零件传热的影响[D]. 杭州,浙江大学, 2013.


Shao Y H. Influence of Heat Flux and Material Properties on Heat Transfer of Parts[D]. Hangzhou: Zhejiang University, 2013.


[25]何成, 何欢, 裴锦华, . 考虑温变效应的热物性参数RBF辨识方法[J]. 工程力学, 2015, 32(1):205-212.


He C, He H, Pei J H, et al. Identification of temperaturedepending thermophysical parameters based on RBF method[J]. Engineering Mechanics, 2015, 32(1):205-212.


[26]Ju D Y. Effect of bubbling boiling and breaking of steam film on heat transfer coefficient in stirring quenching process[A].Proceedings of the Fourth International Conference on Quenching and Control of Distortion[C].Beijing2003.


[27]Buczek A, Telejko T. Investigation of heat transfer coefficient during quenching in various cooling agents[J]. International Journal of Heat & Fluid Flow, 2013, 44(4):358-364.


[28]Ikkene R, Koudil Z, Mouzali M. Cooling characteristic of polymeric quenchant: Calculation of HTC and prediction of microstructure and hardness[J]. Journal of Materials Engineering & Performance, 2014, 23(11):1-12.


[29]Caron E J F R, Daun K J, Wells M A. Experimental heat transfer coefficient measurements during hot forming die quenching of boron steel at high temperatures[J]. International Journal of Heat & Mass Transfer, 2014, 71(1):396-404.


[30]常国光, 刘宪冬, 陈春焕, . GCr15钢淬火过程换热系数的计算[J]. 材料导报, 2013, 27(s1):120-122.


Chang G G, Liu X D, Chen C H, et al. Calculation of the heat transfer coefficient of GCr15 steel in quenching process[J]. Materials Review, 2013, 27(s1):120-122.


[31]曹欣, 孙志超, 杨合. 基于DEFORM反传热模型表面换热系数的确定[J]. 塑性工程学报, 2013, 20(2):130-135.


Cao X, Sun Z C, Yang H. Determination of surface heat transfer coefficient via inverse heat transfer model based on DEFORM software[J]. Journal of Plasticity Engineering, 2013, 20(2):130-135.


[32]潘健生, 王婧, 顾剑锋. 热处理数值模拟进展之一——扩展求解域热处理数值模拟[J]. 金属热处理, 2012, 37(1):7-13.


Pan J S, Wang J, Gu J F. One of progress in heat treatment numerical simulation-Numerical model of heat treatment with expanded solution domain[J]. Heat Treatment of Metals, 2012, 37(1):7-13.


[33]Kopun R, kerget L, Hriberek M, et al. Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures[J]. Applied Thermal Engineering, 2014, 65(1-2):74-84.


[34]Li H P, Zhao G Q, Niu S T, et al. FEM simulation of quenching process and experimental verification of simulation results[J]. Materials Science & Engineering A, 2007, 452-453(24):705-714.


[35]Hao X, Gu J F, Chen N, et al. 3-D numerical analysis on heating process of loads within vacuum heat treatment furnace[J]. Applied Thermal Engineering, 2008, 28(14):1925-1931.


[36]Yang X W, Zhu J C, Lai Z H, et al. Finite element analysis of quenching temperature field, residual stress and distortion in A357 aluminum alloy large complicated thinwall workpieces[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1751-1760.


[37]Narazaki M, Kogawara M, Shirayori A, et al. Experimental and simulation studies on asymmetrical quench distortion of long thin steel parts[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.


[38]梁旭坤, 陈磊, 胡永会. 厚板非对称淬火变形的仿真研究[J]. 热加工工艺, 2013, 42(20):202-203.


Liang X K, Chen L, Hu Y H. Simulation study on asymmetrical quenching deformation of thick plate[J]. Hot Working Technology, 2013, 42(20):202-203.


[39]王朋. ZL205A大型薄壁筒形件变形预测及控制[D]. 哈尔滨: 哈尔滨工业大学, 2014.


Wang P. The Prediction and Control of Deformation of ZL205A Large Shell Cylindrical Castings[D]. Harbin: Harbin Institute of Technology, 2014.


[40]黄树海, 赵祖德, 肖远伦, . 冷热循环对铝合金锥形件淬火残余应力和加工变形的影响[J]. 机械工程学报, 2010, 46(14):73-78.


Huang S H, Zhao Z D, Xiao Y L, et al. Influence of thermalcooling cycle on both quenchinginduced residual stress and machininginduced distortion of aluminum coneshaped part[J]. Journal of Mechanical Engineering, 2010, 46(14):73-78.


[41]齐冲. 铝合金圆筒结构淬火残余应力形成及分布规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.


Qi C. Research on Formation and Distribution of Quenching Residual Stress of Aluminum Alloy Cylindrical Structure[D]. Harbin: Harbin Institute of Technology, 2015.


[42]陈杰. 套类零件淬火变形分析[J]. 热加工工艺, 2008, 37(10):68-70.


Chen J. Analysis of quenching deformation for case parts[J]. Hot Working Technology, 2008, 37(10):68-70.


[43]Dubal M G P. Salt bath quenching for minimum distortion[A]. International Quenching and Control of Distortion Conference American Society for Metals[C]. Chicago,2012.


[44]孙清汝, 许东, 殷宝森. 湍流式搅拌在控制圆筒形薄壁铝合金淬火尺寸变形中的应用[J]. 金属加工, 2014, (s2):87-89.


Sun Q R, Xu D, Yin B S. The application of turbulent mixing in controlling the deformation of cylindrical thinwalled aluminum alloy quenching[J]. Metal Forming, 2014, (s2):87-89.


[45]Zhou X. Effect comparison of dip quenching and spray quenching heat treatment of heavy forgings used for nuclear power[J]. Heavy Castings & Forgings, 2016, (6): 35-37,52.


[46]贺连芳, 赵国群, 李辉平, . 基于响应曲面方法的热冲压硼钢B1500HS淬火工艺参数优化[J]. 机械工程学报, 2011, 47(8):77-82.


He L F, Zhao G Q, Li H P, et al. Optimization of quenching parameters for hot stamping boron steel B1500HS based on response surface methodology[J]. Journal of Mechanical Engineering, 2011, 47(8):77-82.


[47]李轩颖, 徐雪峰, 付春林, . 某型飞机钛合金钣金件热冲压成形工艺参数优化[J]. 塑性工程学报, 2017, 24(1):92-97.


Li X Y, Xu X F, Fu C L, et al. Optimization of hot stamping process parameters for a certain type of aircraft titanium alloy sheet metal parts[J]. Journal of Plasticity Engineering, 2017, 24(1):92-97.


[48]Wen Y M, Wang B Y, Lin J G, et al. Influence of process parameters on properties of AA6082 in hot forming process[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(11):2454-2463.


[49]何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形-淬火一体化工艺研究进展[J]. 精密成形工程, 2014, (5):37-44.


He Z B, Fan X B, Yuan S J. Review of hot formingquenching integrated process of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2014, (5):37-44.


[50]Luo X, Totten G E. Distortion control: Quenching apparatus for hardening parts: An overview[J]. MPC, 2014, 3(4): 477-504.


[51]葛瑞荣, 周尚荣, 董平, . 用数值模拟方法改进淬火夹具结构和装夹方法以减少淬火畸变[J]. 金属热处理, 2010, 35(4):56-61.


Ge R R, Zhou S R, Dong P, et al. Improved quenching clamp structure and mount method with numerical simulation calculation for reducing quenching distortion[J]. Heat Treatment of Metals, 2010, 35(4):56-61.


[52]卢琛, 张程菘, 富宏亚, . ZL205A铝合金大型薄壁件淬火过程模拟与变形控制[J]. 热处理技术与装备, 2016, 37(1):81-85.


Lu C, Zhang C S, Fu H Y, et al. Simulation of quenching process and control of distortion about large thinwall workpiece of ZL205A aluminum alloy[J]. Heat Treatment Technology & Equipment, 2016, 37(1):81-85.


[53]徐建军. 薄曲面钛合金缘条的热处理保形工装研究[D]. 南京:南京航空航天大学, 2016.


Xu J J. Study on Conformal Fixture for Heattreatment of Thin Curved Tialloy Boom[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.


[54]Yang X W, Li W, Zhu J C, et al. Numerical study of residual stresses and distortion in quenched large complicated thinwall A357 aluminum alloy workpieces [A]. Proceedings from the 5th International Conference on Thermal Process Modeling and Computer Simulation[C]. Orlando,2014.


[55]牛山廷. 淬火冷却过程三维有限元模拟及工艺参数优化的研究[D]. 济南:山东大学, 2007.


Niu S T. Study on Threedimensional Finite Element Simulation and Optimization of Process Parameters for Quenching Process[D]. Jinan: Shandong University, 2007.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9