网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
板材自阻加热成形中电流的热效应与极性效应研究进展
英文标题:Study progress on heat and polarity effects of current in sheet metal forming with resistance heating
作者:张凯锋 
单位:哈尔滨工业大学 
关键词:自阻加热 金属板成形 热效应 极性效应 电流 
分类号:TG156
出版年,卷(期):页码:2018,43(7):71-90
摘要:

评述了近期在板材自阻加热成形中的电流的热效应与极性效应方面的研究进展,包括本研究团队的有关工作。主要从板材自阻加热塑性成形的热效应与应用研究和自阻加热塑性变形中极性效应与机理研究两部分展开论述。内容涵盖板材自阻加热行为、温度不均匀性与温度场控制方法、自阻加热与成形的装置、自阻加热成形的若干应用,自阻加热拉伸过程极性效应与初步分析、粗晶板材自阻加热自由胀形过程极性效应与初步分析、自阻加热过程中温度分布的极性效应及其对成形的影响等。最后,对于本领域的发展前景进行了展望,提出可以在板材自阻加热数据库、板材自阻加热温度分布与均匀性控制、自阻加热工艺装置与智能化以及非热效应的确认与机理等方面继续开展研究。

Some recent study progress in heat and polarity effects of current in the sheet metal forming with resistance heating was reviewed including relevant work of the author′s research team, which was mainly divided into two parts, namely, the heat effect and application research of the resistance heating plastic forming for sheet metal as well as the polarity effect and mechanism research in the resistance heating plastic deformation. The above content covered the resistance heating behavior of sheet metal, nonuniformity of temperature and control methods of temperature field, resistance heating and forming devices, applications of resistance heating forming, polarity effects and preliminary analysis in the stretching process under resistance heating, polarity effect and preliminary analysis of coarse grain plate in the free bulging process under resistance heating, polarity effect of temperature distribution and its influence on forming in the resistance heating process. Finally, the development prospects in this field was looked forward, and it was proposed to continue research on the resistance heating database of sheet metal, the control of temperature distribution and uniformity in the resistance heating of sheet metal, and the identification and mechanism of resistance heating equipment, intelligentialize and nonthermal effects.

基金项目:
国家自然科学基金资助项目(51675125)
作者简介:
张凯锋(1951-),男,博士,教授,E-mail:kfzhang@hit.edu.cn
参考文献:

[1]Mori K, Maki S, Tanaka Y. Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating [J]. Ann. CIRP, 2005, 54 (1): 209-212.


[2]Mori K, Maeno T, Fukui Y. Spline forming of ultrahigh strength gear drum using resistance heating of side wall of cup[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 299-302.


[3]Mori K, Maeno T, Yamada H, et al. 1-shot hot stamping of ultrahigh strength steel parts consisting of resistance heating, forming, shearing and die quenching[J]. International Journal of Machine Tools & Manufacture, 2015, 89: 124-131.


[4]Kim W, Yeom K H, Thien N T, et al. Electrically assisted blanking using the electroplasticity of ultrahigh strength metal alloys[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1): 273-276.


[5]王博, 张凯锋, 赖小明, . SiCp/2024Al复合材料板材脉冲电流辅助拉深成形[J]. 锻压技术, 2012, 37(5): 22-26.


Wang B, Zhang K F, Lai X Met al. Pulse current auxiliary deep drawing of SiCp/2024Al composites sheet[J]. Forging & Stamping Technology, 201237(5):22-26.


[6]Maeno T, Mori K, Unou C. Improvement of die filling by prevention of temperature drop in gas forming of aluminium alloy tube using air filled into sealed tube and resistance heating[J]. Procedia Engineering, 2014, 81: 2237-2242.


[7]Maeno T, Mori K, Adachi K. Gas forming of ultrahigh strength steel hollow part usingair lled into sealed tube and resistance heating[J]. Journal of Materials Processing Technology, 2014, 214(1):97-105.


[8]Maki S, Harade Y, Mori K, et al. Application of resistance heating technique to mushy state forming of aluminium alloy[J]. Journal of Materials Processing Technology, 2002, 125(2):477-482.


[9]Zhu R F, Tang G Y, Shi S Q, et al. Effect of electroplastic rolling on deformability and oxidation of NiTiNb shape memory alloy[J]. Journal of Materials Processing Technology, 2013, 213(1): 30-35.


[10]Ye X X, Tse T H, Tang G Y, et al. Effect of electroplastic rolling on deformability, mechanical property and microstructure evolution of Ti6Al4V alloy strip[J]. Materials Characterization, 2014, 98: 147-161.


[11]Zhu R F, Tang G Y, Shi S Q, et al. Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy[J]. Materials and Design, 2013, 44: 606-611.


[12]Xu Z H, Tang G Y, Tian S Q, et al. Research of electroplastic rolling of AZ31 Mg alloy strip[J]. Journal of Materials Processing Technology, 2007, 182(1): 128-133.


[13]Tang G Y, Zhang J, Zheng M X, et sl. Experimental study of electroplastic effect on stainless steel wire 304L[J]. Materials Science and Engineering A, 2000, 281(1): 263-267.


[14]Zimniak Z, Radkiewicz G. The electroplastic effect in the colddrawing of copper wires for the automotive industry[J]. Archives of Civil and Mechanical Engineering, 2008, 8(2): 173-179.


[15]Tang G Y, Zhang J, Yan Y J, et al. The engineering application of the electroplastic effect in the colddrawing of stainless steel wire [J]. Journal of Materials Processing Technology, 2003, 137(1-3): 96-99.


[16]Adam Jordan, Brad L Kinsey. Investigation of thermal and mechanical effects during electricallyassisted micro bending [J]. Journal of Materials Processing Technology, 2015,221:1-12.


[17]Mai J M, Peng L F, Lai X M, et al. Electricalassisted embossing process for fabrication of microchannels on 316L stainless steel plate [J]. Journal of Materials Processing Technology, 2013, 213(2): 314-321.


[18]Li C, Tan H, Wu W M. Effect of pulsecurrent heating multiple forging on mechanical properties of MgNdZnZr alloy [J]. Materials Science and Technology, 2016, 32(10): 985-991


[19]方林强. 电塑性滚压包边工艺研究[D]. 上海: 上海交通大学, 2012.


Fang L Q. A Study of Electroplastic Roll Hemming Process [D]. Shanghai: Shanghai Jiao Tong University, 2012.


[20]肖军杰,李东升,李小强,. 钛合金薄壁零件数控热拉伸蠕变复合成形研究进展[J].稀有金属材料与工程, 2013, 42(12): 2629-2635.


Xiao J J, Li D S, Li X Q, et al. State of the art of hot stretchcreep compound forming for thinwall titanium alloy components[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2629-2635.


[21]鲍文科. AZ31B镁合金板材电致塑性渐进成形研究[D]. 济南:山东大学,2016.


Bao W K. Research on Electroplastic Incremental Forming of AZ3IB Magnesium Alloy Sheet [D]. Jinan: Shandong University, 2016.


[22]张宁,张艳苓,毕静,. 铝锂合金电致超塑性本构方程[J]. 锻压技术,2015, 40(5): 63-68.


Zhang NZhang Y LBi Jet al. Constitutive equation of electrosuperplastic for 1420 Al-Li alloy [J]. Forging & Stamping Technology, 2015, 40(5): 63-68.


[23]Stephen D Antolovich, Hans Conrad. The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: An interpretive survey[J]. Materials and Manufacturing Processes, 2004, 19(4): 587-610.


[24]Troitskii O A, Spitsyn V I, Sokolov N V. Application of highdensity current in plastic working of metals[J]. Physica Status Solidi, 1979, 52(1): 85-93.


[25]毛良桢. 电镦机在现代模锻生产上的应用[J]. 金属热处理,1958(2)20-25.


Mao L Z. Application of electric upsetting machine in modern die forging production[J]. Heat Treatment of Metals, 1958, (2): 20-25.


[26]Mori K, Bariani P F, Behrens B A, et al. Hot stamping of ultrahigh strength steel parts[J]. CIRP Annals-Manufacturing Technology, 2017, 66:755-777.


[27]李超. 轻合金板材脉冲电流辅助超塑成形工艺及机理研究[D]. 哈尔滨:哈尔滨工业大学, 2012.


Li C. Processing and Mechanism of Pulse Current Auxiliary Superplastic Forming of Light Alloy Sheet[D]. Harbin: Harbin Institute of Technology, 2012.


[28]吉泽升,朱荣凯,李丹. 传输原理[M].哈尔滨:哈尔滨工业大学出版社,2005.


Ji Z S, Zhu R K, Li D. Transmission Principle[M].Harbin: Press of Harbin Institute of Technology, 2005.


[29]李超,张凯锋,蒋少松. Ti6Al4V 合金双半球结构脉冲电流辅助超塑成形[J]. 稀有金属材与工程, 2012, 41,(8):1400-1404.


Li C, Zhang K F, Jiang S S. Pulse current auxiliary superplastic forming of Ti6Al4V alloy double hemisphere[J]. Rare Metal Materials and Engineering, 2012, 41,(8):1400-1404.


[30]刘泾源,脉冲电流在轻合金超塑变形中的宏微观作用机制[D]. 哈尔滨:哈尔滨工业大学, 2015.


Liu J Y. Effect of Electric Current on Micromacro Mechanism of Light Alloy Superplastic Deformation [D]. Harbin: Harbin Institute of Technology, 2015.


[31]Wang B, Wang G F, Jiang S S, et al. Effect of pulse current on thermal performance and deep drawing of SiCp/2024Al composite sheet[J]. International Journal of Advanced Manufacturing Technology, 2013, 67(1-4):623-627.


[32]Wang B, Yia Z X, Lai X M, et al. Analysis on heating performance and thermal forming of lightweight alloy using pulse current heating[J]. Procedia Engineering, 2017, 207: 639-644.


[33]Liu J Y, Zhang K F, Jiang S S. Pulse current auxiliary tensile and bulging of light metal alloy[J]. Advanced Materials Research, 2013, 690-693: 2356-2360.


[34]肖寒,张凯锋,姜巨福,等,5A90 AlLi 合金桁条电流自阻加热成形技术[J]. 锻压技术,2017, 42(7)66-71.


Xiao H, Zhang K F, Jiang J F, et al. Current resistance heating forming technology of AlLi alloy 5A90 stringers[J]. Forging & Stamping Technology, 2017, 42(7)66-71.


[35]陶楠. GH99高温合金和TA15钛合金U形件自阻加热弯曲成形精度控制[D]. 哈尔滨:哈尔滨工业大学, 2016.


Tao N. Precision Control of Resistance Heating Forming of GH99 and TA15 Alloy U Shaped Part[D]. Harbin: Harbin Institute of Technology, 2016.


[36]吴雪松. 电流辅助热成形高强钢细长结构件的成形质量与组织控制[D]. 哈尔滨:哈尔滨工业大学, 2015.


Wu X S. Forming Quality and Microstructure Control of Current Auxiliary Hot Forming Process of Highstrength Steel Slender Structure Parts[D]. Harbin: Harbin Institute of Technology, 2015.


[37]Nie D M, Lu Z, Zhang K F. Hot bending behavior of SUS 304 stainless steel sheet assisted by resistance heating: Multifield coupling numerical simulation and experimental investigation[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 2763-2774.


[38]Li C, Zhang K F, Jiang S S, et al. Pulse current auxiliary bulging and deformation mechanism of AZ31 magnesium alloy [J]. Materials & Design, 2012, 34:170-178.


[39]Li C, Jiang S S, Zhang K F. Pulse current assisted hotforming of light metal alloy [J]. The International Journal of Advanced Manufacturing Technology, 2012, 63 (9-12):931-938.


[40]Mori K, Maeno T, Mongkolkaji K. Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping [J]. Journal of Materials Processing Technology, 2013, 213(3): 508-514.


[41]Mori K, Saito S, Maki S. Warm and hot punching of ultra high tensile strength steel sheets[J]. CIRP Annals-Manufacturing Technology, 2008, 57: 321-324.


[42]温均有. 圆形板料电流加热温度场与升温规律数值模拟与实验研究 [D]. 哈尔滨:哈尔滨工业大学, 2017.


Wen J Y. Numerical Simulation and Experiment of Resistance Heating Temperature Field and Rising Rule for Circular Plate[D]. Harbin: Harbin Institute of Technology, 2017.


[43]Mori K. Hot stamping of ultrahigh strength steel parts[J]. Journal of the Japan Society for Technology of Plasticity, 2017, 58(673):125-129.


[44]Wang G F, Wang B, Jiang S S, et al. Pulse current auxiliary thermal deep drawing of SiCp/2024Al domposite sheet with poor formability [J]. Journal of Materials Engineering and Performance, 2012, 21(10):2062-2066.


[45]王博. 脉冲电流对铝基复合材料拉深变形与扩散连接的影响[D]. 哈尔滨:哈尔滨工业大学, 2013.


Wang B. Effects of Pulse Current on Deep Drawing Deformation and Diffusion Bonding of Aluminum Matrix Composites[D]. Harbin: Harbin Institute of Technology, 2013.


[46]肖寒. 5A90AlLi合金自阻加热成形工艺与装备[D]. 哈尔滨: 哈尔滨工业大学, 2015.


Xiao H. Resistance Heating Forming Processes and Equipment of 5A90 AlLi Alloy[D]. Harbin: Harbin Institute of Technology, 2015.


[47]Mori K, Maeno T, Fukui Y. Spline forming of ultrahigh strength gear drum using resistance heating of side wall of cup[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1): 299-302.


[48]Kim W, Yeom K H, Thien N T, et al. Electrically assisted blanking using the electroplasticity of ultrahigh strength metal alloys[J]. CIRP AnnalsManufacturing Technology, 2014, 63(1): 273-276.


[49]Mori K. Smart hot stamping of ultrahigh strength steel parts[J]. Transactions of Nonferrous Metals Society of China, 2012, 22:496-503.


[50]Liu J Y, Zhang K F, Jiang S S. Pulse current auxiliary tensile and bulging of light metal alloy[J]. Advanced Materials Research, 2013, 690-693: 2356-2360.


[51]Wang G F, Zhao T, Yang M, et al. Current assisted superplastic forming of titanium alloy bellows[J]. Materials Science Forum, 2016, 838-839: 135-142.


[52]Stephen D Antolovich, Conrad H. The effects of electric currents and fields on deformation in metals, ceramics, and ionic materials: An interpretive survey[J]. Materials and Manufacturing Processes, 2004, 19(4): 587-610.


[53]Li C, Jiang S S, Zhang K F, et al. Promotion mechanism of the pulse current on the superplastic deformation of AZ31 magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 25(2):153-159.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9