网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
5A02-O铝合金锥底筒形件充液拉深有限元模拟
英文标题:
作者:王秀丽 胡桃桃 喻家俊 王会廷 
单位:安徽工业大学 
关键词:锥底筒形件 充液拉深 液压加载路径 DYNAFORM 5A02-O铝合金 
分类号:TG156
出版年,卷(期):页码:2018,43(7):134-139
摘要:

锥底筒形件由锥底和较高的直壁筒组成,其充液拉深过程中液压加载路径既不同于筒形件,也有异于锥形件。利用DYNAFORM有限元软件对锥底筒形件充液拉深过程进行模拟,研究了不同液室压力加载路径对充液拉深锥底筒形件壁厚分布、破裂与起皱等的影响规律,分析了锥底筒形件液压加载路径控制策略。研究结果表明:采用2拐点的液压加载路径适合锥底筒形件充液拉深成形,第1个拐点位置为凸模底部圆角圆心,与凹模圆角圆心在同一条水平线上,第2个拐点位置为凸模锥底上部圆角圆心,与凹模圆角圆心在同一条水平线上;充液拉深得到的锥底筒形件壁厚分布存在2个波谷点,第1个波谷点在锥底筒形件锥形底部圆角和锥壁的结合处(A点),第2个波谷点在锥底上部圆角和直壁结合处(B点);对于不同的拉深比和锥角,应该采用合理的液压加载路径。

The cylindrical part with conical bottom composes of a conical bottom and a higher straight wall cylinder, and the hydraulic pressure loading path in the hydraulic deep drawing process is different from those of both cylindrical part and conical part. Therefore, the hydraulic deep drawing process of the cylindrical part with conical bottom was simulated by finite element software DYNAFORM, and the influences of different hydraulic pressure loading paths on their wall thickness distribution, fracture and wrinkling were analyzed. Then, the control strategy of hydraulic pressure loading path for the cylindrical part with conical bottom was also studied. The results show that the hydraulic pressure loading path of two inflection points is suitable for the hydraulic deep drawing of the cylindrical part with conical bottom. Namely, the first inflection point is fillet center at the punch bottom, which is on the same horizontal line as the fillet center at the die, and the second inflection point is fillet center at the top of conical bottom of punch, which is on the same horizontal line as the fillet center at the die. Furthermore, there are two wave trough points in the wall thickness distribution of formed cylindrical part with conical bottom by hydraulic deep drawing, the first point lies at the junction between bottom fillet and conical wall of the cylinder part with conical bottom (Point A), the second point lies at the junction between fillet at the top of conical bottom and straight wall (Point B). Thus, the reasonable hydraulic pressure loading path should be adopted according to different drawing ratios and cone angles.

基金项目:
国家自然科学基金资助项目(51275003)
作者简介:
王秀丽(1991-),女,硕士研究生,E-mail:469990054@qq.com;通讯作者:王会廷(1971-),男,博士,副教授,E-mail:wgwht@nuaa.edu.cn
参考文献:

[1]李军义, 王东新, 刘兆刚, . 铍铝合金的制备工艺与应用进展[J]. 稀有金属, 2017, 41(2): 203-210.


Li J Y, Wang D X, Liu Z G, et al. Progress in production method and application of beryllium aluminum alloy[J]. Chinese Journal of Rare Metals, 2017, 41(2): 203-210.


[2]郑晖, 赵曦雅. 汽车轻量化及铝合金在现代汽车生产中的应用[J]. 锻压技术, 2016, 41(2): 1-6.


Zheng H, Zhao X Y. Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forging & Stamping Technology, 2016, 41(2): 1-6.


[3]陈超, 赵升吨, 韩晓兰, . 轻质合金无铆塑性连接方式及其关键技术的探讨[J]. 锻压技术, 2016, 41(1): 1-6.


Chen C, Zhao S D, Han X L, et al. Discussion on mechanical clinching type and its key technology for lightweight alloy[J]. Forging & Stamping Technology, 2016, 41(1): 1-6.


[4]Choi H, Ko M, Ni J. A study on the analytical modeling for warm hydro-mechanical deep drawing of lightweight materials[J]. International Journal of Machine Tools and Manufacture,2007, 47(11): 1752-1766.


[5]刘晓晶,闫巍,郭立伟. 铝镁合金双路径加载充液拉深成形的数值模拟[J]. 中国有色金属学报,200818(4)698-702.


Liu X J, Yan W, Guo L W. Numerical simulation of aluminum-magnesium alloy cup′s forming by hydrodynamic deep drawing with double loading paths[J]. The Chinese Journal of Nonferrous Metal, 2008, 18 (4): 698-702.


[6]Bormashenko E, Sutovski S, Pogreb R, et al. Novel method of low-melting metal micro-powders fabrication[J]. Journal of Materials Processing Technology,2005, 168(2): 367-371.


[7]Abedrabbo N, Pourboghrat F, Carsley J. Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermos-mechanical finite element models[J]. International Journal of Plasticity, 2007, 23(5): 841-875.


[8]Toros S, Ozturk F, Kacar I. Review of warm forming of aluminum-magnesium alloys[J]. Journal of Materials Processing Technology, 2008, 207(1-3): 1-12.


[9]Zhang S H. Developments in hydro-forming[J]. Journal of Material Process Technology, 1999, 91(1-3): 236-244.


[10]徐永超,陈宇,苑世剑. 半球底筒形件充液拉深加载路径优化研究[J]. 哈尔滨工业大学学报, 2008, 40 (7): 1076-1080.


Xu Y C, Chen Y, Yuan S J. Loading path optimization of hydro-mechanical deep drawing of the cup with a semi-ball bottom[J]. Journal of Harbin Institute of Technology, 2008,40(7): 1076-1080.


[11]刘晓晶,徐永超,苑世剑. 反胀压力对铝合金球底筒形件充液拉深过程的影响[J]. 塑性工程学报, 2008, 15(3): 42-46.


Liu X J, Xu Y C, Yuan S J. The influence of inverse bulging pressure on the hydrodynamic deep drawing process of aluminium alloy cylindrical cups with a hemispherical bottom[J]. Journal of Plasticity Engineering, 2008, 15(3): 42-46.


[12]赵庆娟. 基于数值模拟的锥形件充液拉深工艺研究[D].哈尔滨:哈尔滨理工大学,2009.


Zhao Q J. Research on the Cylindrical Cup by Hydrodynamic Deep Drawing Based on Numerical Simulation[D]. HarbinHarbin University of Science and Technology, 2009.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9