网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
摩擦系数对薄壁T型管内高压成形的影响
英文标题:Influence of friction coefficient on internal high pressure forming for thin-walled T-shaped tube
作者:戴龙飞 徐雪峰 孙前江 张建伟 熊光利 
单位:南昌航空大学 中航工业洪都航空工业集团公司 
关键词:T型三通管 摩擦系数 数值模拟 壁厚 内高压成形 
分类号:TG394
出版年,卷(期):页码:2018,43(7):159-164
摘要:

为探究不同摩擦系数对成形T型三通管支管高度、壁厚差、最小壁厚及关键部位的壁厚变化的影响,利用DYNAFORM软件,对薄壁T型三通管内高压成形过程进行了模拟,研究了在0.01~0.2范围内6种不同摩擦系数情况下,支管高度和壁厚的变化,分析了最小壁厚和关键点随时间的变化情况,并选用4种不同润滑剂进行实验验证。结果表明:成形T型三通管的合适的摩擦系数区域为0.06~0.125,摩擦系数过大或过小都会影响T型三通管的成形效果。依据模拟结果,对薄壁铝合金管材进行成形实验,研究发现实际管材成形效果与DYNAFORM模拟结果较为吻合,验证了数值模拟结果的合理性。

To explore the influences of different friction coefficients on the branch height, wall thickness difference, minimum wall thickness and wall thickness variation at critical positions of T-shaped tube, the internal high pressure forming process of thin-walled T-shaped tube was simulated by DYNAFORM. Then, the changes of branch height and wall thickness were investigated by six kinds of friction coefficients in the range of 0.01-0.2, and the changes of the minimum wall thickness and the key points versus time were analyzed. Furthermore, the experiments were conducted by four kinds of lubricants. The results show that the forming quality of T-shaped tube is the best when the friction coefficient is in the range of 0.06-0.125, and the excessive friction coefficient or too little friction coefficient influence the forming of T-shaped tube. According to the simulation results, the forming experiments of thinwalled aluminum alloy tubes were carried out, and the actual forming results agree with the simulation results well,which verifies the rationality of the numerical simulation results.
 

基金项目:
国家自然科学基金资助项目(51405219);中航工业产学研项目(BA2013063219)
作者简介:
戴龙飞(1992-),男,硕士研究生,E-mail:mmlftt@163.com;通讯作者:徐雪峰(1984-),男,博士,副教授,E-mail:xfwinzy@163.com
参考文献:

[1]苑世剑, 何祝斌, 刘钢,. 内高圧成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10):2523-2533.


Yuan S J, He Z B, Liu G, et al. New developments in theory and processes of internal high pressure forming[J]. Chinese Journal of Nonferrous Metals, 2011, 21(10):2523-2533.


[2]Crapps J, Marin E B, Horstemeyer M F, et al. Internal state variable plasticity-damage modeling of the copper tee-shaped tube hydroforming process[J]. Journal of Materials Processing Technology, 2010, 210(13):1726-1737.


[3]刘忠利, 郭训忠, 骆心怡,. 汽车排气管件内高压成形数值模拟及试验[J]. 塑性工程学报, 2015, 22 (4):88-92.


Liu Z L, Guo X Z, Luo X Y, et al. Numerical simulation and experiment of the hydroforming for automobile exhaust pipe[J]. Journal of Plasticity Engineering, 2015, 22 (4):88-92.


[4]闫小青, 樊保圣, 扶名福,. 基于ADINA的非局部摩擦模型的数值分析[J]. 塑性工程学报, 2011, 18(4):69-73.


Yan X Q, Fan B S,Fu M F, et al. Numerical analysis of non-local friction model based on ADINA[J]. Journal of Plasticity Engineering,2011, 18(4):69-73.


[5]贾宇坤, 罗建斌, 李健,. 轿车加强梁内高压成形规律的仿真研究[J]. 锻压技术, 201742(2):183-188.


Jia Y K, Luo J B, Li J, et al. Simulation study on the hydroforming regulation of reinforcing beam of car[J]. Forging & Stamping Technology, 2017,42(2):183-188.


[6]Hyae Kyung Y I, Hong S Y, Lee G Y, et al. Experimental investigation of friction coefficient in tube hydroforming[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(z1): 194-198.


[7]杨程, 张敏娜, 汤丹妮,. 改变摩擦方式的挤压成形研究现状[J].锻压技术, 2015, 40(5):1-6.


Yang C, Zhang M N, Tang D N, et al. Research status on extrusion with changing friction mode[J]. Forging & Stamping Technology, 2015, 40(5):1-6.


[8]刘文, 张天顺. 基于局部摩擦控制的柔性内高压成形机理研究[J]. 模具工业,2015, 41(9):449-453.


Liu W, Zhang T S. Study on formability theory and experiment of tube hydroforming based on local friction control[J]. Die & Mould Industry, 2015, 41(9):449-453.


[9]吴春蕾, 杨连发. 管材液压成形中表面粗糙度与液体压强对摩擦系数的影响[J]. 锻压技术, 2014, 39(11):74-80.


Wu C L, Yang L F. Effects of surface roughness and hydraulic pressure on friction coefficient intube hydroforming[J]. Forging & Stamping Technology, 2014, 39(11):74-80.


[10]杨兵,宋忠财,张卫刚,等. 管件液压成形的影响因素[J]. 上海交通大学学报,2005, 39(11):1767-1770.


Yang B, Song Z C, Zhang W G, et al. The effect factors on the tube hydroforming process[J]. Journal of Shanghai Jiao Tong University, 2005, 39(11)1767-1770.


[11]Teng B G, Yuan S J, Chen Z T, et al. Plastic damage of T-shape hydroforming[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(s2)294-301.


[12]包文兵, 徐雪峰, 戴龙飞,. 等径三通管整体液压成形壁厚分布规律[J]. 锻压技术, 2017, 42(4):91-95.


Bao W B, Xu X F, Dai L F, et al. Wall thickness distribution in integral hydroforming for equal T-shaped tube[J]. Forging & Stamping Technology, 2017, 42(4):91-95.


[13]徐岩, 李泷杲, 高霖,. 摩擦圆辊直径与摩擦包角对板成形摩擦系数测量的影响[J]. 机械科学与技术, 2008, 27(3)305-309.


Xu Y, Li S G, Gao L, et al. Influnence of friction column diameter and friction angle on friction coefficient testing in sheet metal forming[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3):305-309.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9