摘要:
|
采用GLEEBLE3500热模拟试验机对H13稀土模具钢在不同变形温度(900~1250 ℃)及不同应变速率(0.001~10 s-1)下的流变应力进行检测,检测数据导入Deform-2D软件建立材料数据库,基于刚塑性有限元法对H13稀土模具钢棒材挤压工艺进行模拟分析。在保证棒材整体变形比大于4.0的条件下(实际挤压比为5.6),模拟结果精确预测了挤压载荷-行程曲线,数值模拟中挤压最大载荷为2.1×105 kN(试制过程中挤压最大载荷为2.02×105 kN);分析了挤压过程中坯料的温度场、应力场和金属流动速度场,揭示了棒材挤压过程中材料流动规律并得出了表面易出现缺陷的区域。研究结果指导现场一次性成功地完成Φ485 mm×6000 mm的H13稀土模具钢大规格棒材挤压制造。
|
The flowing stresses of rare earth die steel H13 at 900-1250 ℃ and strain rate from 0.01 to 10 s-1 were tested by GLEEBLE3500 tester respectively. Then, the test data were imported into software Deform-2D to build material database, and the extrusion process of bar for rare earth die steel H13 was simulated numerically by rigid-plastic finite element method. Under the condition that the overall deformation ratio of the bar was more than 4.0 (the actual extrusion ratio was 5.6), the extrusion load-stroke curve was predicted accurately by the simulation results predicted, and the maximum load of extrusion was 2.1×105 kN in numerical simulation (the actual maximum load of extrusion was 2.02×105 kN in the process of trial-produce). Furthermore, the distributions of temperature, stress and flowing velocity of metal were analyzed in the extrusion process, and the rule of metal flowing was discovered to obtain the area where the surface was prone to defect. Thus, the large bar with 485 mm×6000 mm of rare earth die steel H13 was successfully produced in one time with the regarding of the above research results.
|
基金项目:
|
国家重点研发计划(2017YFB0305200)
|
作者简介:
|
刘海江(1979-),男,硕士,副研究员
E-mail:13848522181@163.com
|
参考文献:
|
[1]孙晓林. H13钢中碳氮化物生成机理及高温演变规律 [D]. 北京:北京科技大学,2017.
Sun X L. Formation Mechanism and Evolution Laws at High Temperature of Carbonitrides in H13 Steel [D]. Beijing: University of Science and Technology Beijing, 2017.
[2]Papageorgiou D, Medrea C, Kyriakou N. Failure analysis of H13 working die used in plastic injection moulding [J]. Engineering Failure Analysis, 2013, 35(26):355-359.
[3]Telasang G, Majumdar J D, Padmanabham G, et al. Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel [J]. Surface & Coatings Technology, 2015, 261:69-78.
[4]霍晓阳. 影响H13热作模具钢等向性的因素 [J].钢铁研究学报,2008, 20(11):47-54.
Huo X Y. Factors affecting isotropy of H13 hot die steel [J]. Journal of Iron Streel Research, 2008, 20(11):47-54.
[5]杨远梅,杨接明,李长荣,等. H13钢凝固组织控制技术进展 [J]. 模具制造,2013, 13(12):89-92.
Yang Y M, Yang J M, Li C R, et al. Progress in solidification microstructure control of H13 [J]. Die & Mould Manufacture, 2013,13(12):89-92.
[6]于辉,刘帅帅,刘利刚,等. TA17钛合金热力学行为及加工特性研究 [J]. 稀有金属,2017,41(1):1-7.
Yu H, Liu S S,Liu L G,et al. Hot mechanical behavior and deformability of TA17 titanium alloy [J]. Chinese Journal of Rare Metals,2017,41(1):1-7.
[7]刘章光,李建辉,李培杰,等. Ti-55钛合金板材的超塑形变形及组织演变 [J]. 稀有金属,2017,41(12):1285-1291.
Liu Z G,Li J H,Li P J,et al. Superplastic deformation and microstructure evolution of Ti-55 Alloy sheet [J]. Chinese Journal of Rare Metals,2017,41(12):1285-1291.
[8]苏帅. 锻造比对锻件力学性能及微观组织影响的研究 [D]. 济南:山东大学,2014.
Zhou S. Research on Influence of Forging Ratio to Mechanical Properties and Microstructure of Forgings [D]. Ji′nan: Shandong University,2014.
[9]王郢,刘超,姜方,等. 锻造工艺对电渣重熔H13钢的组织及冲击性能的影响 [J].河北冶金,2015,(6):5-7.
Wang Y, Liu C, Jiang F, et al. Influence of forging process on the structure and impact property of electro remelted H13 streel [J]. Hebei Metallurgy, 2015,(6):5-7.
[10]吴任东, 王雪凤, 张磊. 钢管玻璃润滑热挤压工艺的边界条件 [J]. 塑性工程学报, 2009, 16(4):95-99.
Wu R D, Wang X F, Zhang L. Boundary parameters during glass lubricated hot extrusion of steel pipes [J]. Journal of Plasticity Engineering, 2009,16(4):95-99.
[11]董少国,孙春国,徐艳军. H13钢锻造工艺研究 [J]. 锻造与冲压,2004,(1):20-21.
Dong S G, Sun C G, Xu Y J. The study of forging technology [J]. Forging & Stamping, 2004, (1):20-21.
[12]孟丽芬,胡成亮,赵震. 金属塑形成形中摩擦模型的研究进展 [J]. 模具工业,2014,40(4):1-7.
Meng L F, Hu C L, Zhao Z. Research progress of friction model plastic forming [J]. Mould Industry,2014,40(4):1-7.
[13]刘长勇,张仁佶,颜永年,等. 玻璃润滑剂热挤压工艺的润滑行为分析 [J],机械工程学报,2011,47(20):127-134.
Liu C Y, Zhang R J, Yan Y N, et al. Lubrication behavior of the glass lubricated hot extrusion process [J]. Journal of Mechanical Engineering, 2011,47(20):127-134.
|
服务与反馈:
|
【文章下载】【加入收藏】
|
|
|