网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
镦粗压下量对Al-Zn-Mg-Cu铝合金锻件组织与性能的各向异性的影响
英文标题:Influences of upsetting reduction on microstructure and property anisotropy for Al-Zn-Mg-Cu aluminum alloy forgings
作者:彭振凌 黄兰萍 王会平 马云龙 陈送义 焦慧彬 杨振  陈康华 
单位:中南大学 北京宇航系统工程研究所 
关键词:铝合金 多向自由锻 镦粗压下量 力学性能 抗腐蚀性能 各向异性 
分类号:TG316.2
出版年,卷(期):页码:2018,43(10):13-22
摘要:

为了制备高综合性能的超强铝合金锻件,通过硬度、电导率、力学拉伸和剥落腐蚀等测试,并结合多种显微组织观察(OM、SEM)手段,研究了最终道次的镦粗压下量对AlZnMgCu铝合金锻件组织与性能的各向异性的影响。结果表明:随着最终道次的镦粗压下量的增加,锻件综合力学性能基本不变,各向异性先减小后增大;抗腐蚀性能有所下降,各向异性增大,当最终道次的镦粗压下量为20%~40%时,锻件的强度和伸长率以及抗腐蚀性能的各向异性最小,此时得到的锻件综合性能最优。最终道次的镦粗压下量导致的晶粒形状大小的改变和第2相分布的变化是产生这种现象的主要原因。

In order to produce ultrahigh strength aluminum alloy forgings with high comprehensive properties, the influences of the ultimate upsetting reduction on microstructure and property anisotropy of AlZnMgCu aluminum alloy forgings were studied by hardness, electrical conductivity, mechanical tensile and exfoliation corrosion tests combining with various microstructure observation methods such as OM and SEM. The results show that with the increasing of the ultimate upsetting reduction, the comprehensive mechanical properties are basically unchanged, and the anisotropy is first reduced and then increased. However, the corrosion resistance property is decreased, and the anisotropy is increased. When the amount of the ultimate upsetting reduction is 20%-40%, the strength, elongation and corrosion resistance property of forgings are the least, and its comprehensive performance is optimal. Furthermore, the change in the grain shape and size and the change in the second phase distribution caused by the ultimate upsetting reduction are the main causes of this phenomenon.

基金项目:
国家重点研发计划(2016YFB0300801);国家自然科学基金重大科研仪器设备研制专项(51327902)
作者简介:
彭振凌(1993-),男,硕士研究生,E-mail:pengzhenling@csu.edu.cn;通讯作者:黄兰萍(1973-),女,博士,副教授,博士生导师,E-mail: christie@mail.csu.edu.cn
参考文献:

[1]Timothy Warner. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519-521:1271-1278.


[2]王洪斌,黄进峰,杨滨,等. Al-Zn-Mg-Cu系超高强度铝合金的研究现状与发展趋势[J]. 材料导报,2003, 17(9):1-4.


Wang H B, Huang J F, Yang B, et al. Current status and future direction of ultrahigh strength Al-Zn-Mg-Cu alloys[J]. Materials Review, 2003, 17(9): 1-4.


[3]Liu J. Advanced aluminium and hybrid aerostructures for future aircraft[J]. Materials Science Forum, 2006, 519-521: 1233-1238.


[4]Shuey R T, Barlat F, Karabin M E. Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2009, 40(2):365-376.


[5]Chen S Y, Chen K H, Jia L, et al. Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 329-334.


[6]刘文胜,刘东亮,马运柱,等. 变形温度对2A14铝合金显微组织和力学性能的影响[J]. 中国有色金属学报,201525(2):308-314.


Liu W S, Liu D L, Ma Y Z, et al. Effects of deformation temperature on microstructure and mechanical properties of 2A14 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2):308-314.


 


[7]陈学海,陈康华,梁信,等. 热变形温度对7085铝合金组织和性能的影响[J]. 中国有色金属学报,201121(1):88-94.


Chen X H, Chen K H, Liang X, et al. Effects of hot deformation temperature on microstructure and properties of 7085 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1):88-94.


[8]赵晓东,王亮,喻征,等. Al-Zn-Mg-Cu高强铝合金等温多向自由锻组织性能研究[J]. 锻压技术,2015,40(9):1-6.


Zhao X D, Wang L, Yu Z, et al. Research on microstructure and properties of high strength aluminum alloy Al-Zn-Mg-Cu in isothermal multi-axial open-die forging[J]. Forging & Stamping Technolog, 2015, 40(9):1-6.


[9]Robinson J S, Hossain S, Truman C E, et al. Residual stress in 7449 aluminium alloy forgings[J]. Materials Science & Engineering A, 2010, 527(10):2603-2612.


[10]梁信, 陈康华, 陈学海,. 等温自由锻温度对7085铝合金组织与性能的影响[J]. 中南大学学报:自然科学版, 2012, 43(3):290-295.


Liang X, Chen K H, Chen Xu H, et al. Effects of iosthermal free forging temperature on microstructure and properties of 7085 aluminum alloy[J]. Journal of Central South University: Science and Technology, 2012, 43(3):290-295.


[11]张云飞, 王亮, 赵晓东,. Al-Zn-Mg-Cu高强铝合金多向自由锻数值模拟与实验研究[J]. 锻压技术, 2013, 38(4):167-171.


Zhang Y F, Wang L, Zhao X D, et al. Numerical simulation and experiment research on multi-directional free forging of Al-Zn-Mg-Cu high strength aluminum alloy[J]. Forging & Stamping Technology, 2013, 38(4):167-171.


[12]GB/T 16865—2013,变形铝、镁及其合金加工制品拉伸试验用试样及方法[S].


GB/T 16865—2013Test pieces and method for tensile test for wrought aluminium and magnesium alloys products [S].


[13]GB/T 22639—2008,铝合金加工产品的剥落腐蚀试验方法[S].


GB/T 22639—2008Test method of exfoliation corrosion for wrought aluminium and aluminium alloys[S].


[14]李纪恒, 高学绪, 朱洁,. 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9):1031-1034.


Li J H, Gao X X, Zhu J, et al. Texture and magnetostriction in rolled Fe-Ga alloy[J]. Acta Metal Sinaca, 2008, 44(9):1031-1034.


[15]Parasumanna A B K, Saraf M R, Vora K C, et al. Influence of forging parameters on the mechanical behavior and hot forge ability of aluminium alloy[J]. Materials Today Proceedings, 2015, 2(4-5): 3238-3244.


[16]Morina D, Fourmeaua M, Brvika T, et al. Anisotropic tensile failure of metals by the strain localization theory: An application to a high-strength aluminium alloy[J]. European Journal of Mechanics-A Solids, 2017, 69:99-112.


[17]Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures[J]. Cryogenics, 2016, 79:26-34.


[18]Misak H E, Perel V Y, Sabelkin V, et al. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tension-tension cyclic loading condition [J]. Engineering Fracture Mechanics, 2013, 106:38-48.


[19]向前. 压下量对7xxx系铝合金挤压带板各向异性的影响[D].哈尔滨:哈尔滨工业大学,2015.


Xiang Q. The Influence of Forging Reduction on Anisotropy of 7xxx Alloy Extrusion Plate[D]. Harbin: Harbin Institute of Technology, 2015.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9