[1]Timothy Warner. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519-521:1271-1278.
[2]王洪斌,黄进峰,杨滨,等. Al-Zn-Mg-Cu系超高强度铝合金的研究现状与发展趋势[J]. 材料导报,2003, 17(9):1-4.
Wang H B, Huang J F, Yang B, et al. Current status and future direction of ultrahigh strength Al-Zn-Mg-Cu alloys[J]. Materials Review, 2003, 17(9): 1-4.
[3]Liu J. Advanced aluminium and hybrid aerostructures for future aircraft[J]. Materials Science Forum, 2006, 519-521: 1233-1238.
[4]Shuey R T, Barlat F, Karabin M E. Experimental and analytical investigations on plane strain toughness for 7085 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2009, 40(2):365-376.
[5]Chen S Y, Chen K H, Jia L, et al. Effect of hot deformation conditions on grain structure and properties of 7085 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 329-334.
[6]刘文胜,刘东亮,马运柱,等. 变形温度对2A14铝合金显微组织和力学性能的影响[J]. 中国有色金属学报,2015,25(2):308-314.
Liu W S, Liu D L, Ma Y Z, et al. Effects of deformation temperature on microstructure and mechanical properties of 2A14 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(2):308-314.
[7]陈学海,陈康华,梁信,等. 热变形温度对7085铝合金组织和性能的影响[J]. 中国有色金属学报,2011,21(1):88-94.
Chen X H, Chen K H, Liang X, et al. Effects of hot deformation temperature on microstructure and properties of 7085 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1):88-94.
[8]赵晓东,王亮,喻征,等. Al-Zn-Mg-Cu高强铝合金等温多向自由锻组织性能研究[J]. 锻压技术,2015,40(9):1-6.
Zhao X D, Wang L, Yu Z, et al. Research on microstructure and properties of high strength aluminum alloy Al-Zn-Mg-Cu in isothermal multi-axial open-die forging[J]. Forging & Stamping Technolog, 2015, 40(9):1-6.
[9]Robinson J S, Hossain S, Truman C E, et al. Residual stress in 7449 aluminium alloy forgings[J]. Materials Science & Engineering A, 2010, 527(10):2603-2612.
[10]梁信, 陈康华, 陈学海,等. 等温自由锻温度对7085铝合金组织与性能的影响[J]. 中南大学学报:自然科学版, 2012, 43(3):290-295.
Liang X, Chen K H, Chen Xu H, et al. Effects of iosthermal free forging temperature on microstructure and properties of 7085 aluminum alloy[J]. Journal of Central South University: Science and Technology, 2012, 43(3):290-295.
[11]张云飞, 王亮, 赵晓东,等. Al-Zn-Mg-Cu高强铝合金多向自由锻数值模拟与实验研究[J]. 锻压技术, 2013, 38(4):167-171.
Zhang Y F, Wang L, Zhao X D, et al. Numerical simulation and experiment research on multi-directional free forging of Al-Zn-Mg-Cu high strength aluminum alloy[J]. Forging & Stamping Technology, 2013, 38(4):167-171.
[12]GB/T 16865—2013,变形铝、镁及其合金加工制品拉伸试验用试样及方法[S].
GB/T 16865—2013,Test pieces and method for tensile test for wrought aluminium and magnesium alloys products [S].
[13]GB/T 22639—2008,铝合金加工产品的剥落腐蚀试验方法[S].
GB/T 22639—2008,Test method of exfoliation corrosion for wrought aluminium and aluminium alloys[S].
[14]李纪恒, 高学绪, 朱洁,等. 轧制Fe-Ga合金的织构及磁致伸缩[J]. 金属学报, 2008, 44(9):1031-1034.
Li J H, Gao X X, Zhu J, et al. Texture and magnetostriction in rolled Fe-Ga alloy[J]. Acta Metal Sinaca, 2008, 44(9):1031-1034.
[15]Parasumanna A B K, Saraf M R, Vora K C, et al. Influence of forging parameters on the mechanical behavior and hot forge ability of aluminium alloy[J]. Materials Today Proceedings, 2015, 2(4-5): 3238-3244.
[16]Morina D, Fourmeaua M, Brvika T, et al. Anisotropic tensile failure of metals by the strain localization theory: An application to a high-strength aluminium alloy[J]. European Journal of Mechanics-A Solids, 2017, 69:99-112.
[17]Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures[J]. Cryogenics, 2016, 79:26-34.
[18]Misak H E, Perel V Y, Sabelkin V, et al. Corrosion fatigue crack growth behavior of 7075-T6 under biaxial tension-tension cyclic loading condition [J]. Engineering Fracture Mechanics, 2013, 106:38-48.
[19]向前. 压下量对7xxx系铝合金挤压带板各向异性的影响[D].哈尔滨:哈尔滨工业大学,2015.
Xiang Q. The Influence of Forging Reduction on Anisotropy of 7xxx Alloy Extrusion Plate[D]. Harbin: Harbin Institute of Technology, 2015.
|