网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
粉末热等静压的离散元-有限元混合模拟
英文标题:Simulation on hot isostatic pressing of power by discrete element method and finite element method
作者:熊威 谭海兵 
单位:桂林航天工业学院 中国航发四川燃气涡轮研究院 
关键词:热等静压 粉末颗粒 离散元 有限元 微观仿真 
分类号:TF124
出版年,卷(期):页码:2018,43(10):103-110
摘要:

为了从微观角度仿真热等静压成形过程中粉末颗粒的变形情况,提出使用离散元和有限元混合方法建立热等静压成形的仿真模型。编写了粉末颗粒的随机填充算法,完成了包套内粉末颗粒的填充。使用上述模型,对包套内不同位置的粉末颗粒的变形情况、颗粒间孔隙消失的演化过程和成形后零件表面的形貌进行了仿真,并与已有试验结果进行了对比。仿真结果表明,包套中心的颗粒变形较小,大部分孔隙是在成形达到稳定状态之前消除的,热等静压成形零件的表面形貌主要是在达到稳定状态前形成的。离散元-有限元混合模拟可以反映热等静压成形中颗粒重排和塑性变形阶段的粉末颗粒变形。

In order to microscopically simulate powder particle deformation in hot isostatic pressing (HIP) process, a hybrid simulation model of HIP was presented by discrete element method (DEM) and finite element method (FEM), and a random filling algorithm of power particle was written to finish the filling of powder particle in the can. Then, the power particle deformation in different locations of can, the evolution process of pore disappearing between particles and the surface morphology of parts after forming were simulated by the above model, and these simulated results were compared with the existed experiment results. The simulation results show that the powder particles in the center of can occur less deformation, and most pores disappear before the forming reaches a stable state. Furthermore, the surface morphology of formed parts by HIP is formed before the stable state. So the powder particle deformation during  the particle rearrangement stage and the plastic deformation stage in HIP can be reflected by DEMFEM hybrid simulation.

基金项目:
广西高校中青年教师基础能力提升项目(KY2016YB528);广西青年科学基金项目(2017GXNSFBA198213)
作者简介:
熊威(1983-),男,博士,讲师,E-mail:wayneursa@foxmail.com
参考文献:

[1]Padalko A G, Baklan V A. Transformation in metal materials during hot isostatic pressing[J]. Inorganic Materials, 2012, 48(13):1226-1242.


[2]郎利辉, 王刚, 黄西娜,. 包套在铝合金粉末热等静压成形中的屏蔽效应及其对性能的影响[J]. 中国有色金属学报, 2016, 26(2):261-271.


Lang L H, Wang G, Huang X N, et al. Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2):261-271.


[3]Essa K, Khan R, Hassanin H, et al. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1-11.


[4]徐磊, 邬军, 刘羽寅,. Ti5Al2.5Sn合金粉末热等静压压坯的致密化行为及性能[J]. 钛工业进展, 2011, 28(4):19-23.


Xu L, Wu J, Liu Y Y, et al. Densification and properties of Ti5Al2.5Sn alloy prepared by using HIP[J]. Titanium Industry Progress, 2011, 28(4):19-23.


[5]喻思, 郎利辉, 姚松,. TC11钛合金粉末涡轮盘热等静压成形数值模拟研究[J]. 锻压技术, 2015, 40(3):151-121.


Yu S, Lang L H, Yao S, et al. Research on numerical simulation of hot isostatic pressing for turbine disk shaped by TC11 titanium alloy powder[J]. Forging & Stamping Technology, 2015, 40(3):151-121.


[6]刘国承. 金属粉末热等静压致密化数值模拟与试验研究[D]. 武汉: 华中科技大学, 2011.


Liu G C. Metal Powders Densification under Hot Isostatic Pressing: Numerical Simulation and Experiment[D]. Wuhan: Huazhong University of Science and Technology, 2011.


[7]郭瑞鹏, 徐磊, 程文祥,. 热等静压参数对Ti5Al2.5Sn ELI粉末合金组织与力学性能的影响[J]. 金属学报, 2016, 52(7):842-850.


Guo R P, Xu L, Cheng W X, et al. Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti5Al2.5Sn ELI alloy[J]. Acta Metallurgica Sinica, 2016, 52(7):842-850.


[8]Alakleme S, Kivikyt-reponen P, Liimatainen J, et al. Abrasive wear properties of metal matrix composites produced by hot isostatic pressing[J]. Proceedings of the Estonian Academy of Sciences Engineering, 2006, 12(4):445-454.


[9]陆恒, 魏青松, 薛鹏举,. Inconel 625粉末盘热等静压近净成形过程模拟与验证[J]. 中国机械工程, 2013, 24(19):2675-2686.


Lu H, Wei Q S, Xue P J, et al. Numerical simulation and verification of near-net-shaping Inconel 625 powder disk under hot isostatic pressing[J]. China Mechanical Engineering, 2013, 24(19):2675-2686.


[10]徐磊, 郭瑞鹏, 刘羽寅. 钛合金粉末热等静压近净成形成本分析[J]. 钛工业进展, 2014, 31(6):1-6.


Xu L, Guo R P, Liu Y Y. Cost analysis of titanium alloy parts through near-net-shape hot-isostatic-pressing technology[J]. Titanium Industry Progress, 2014, 31(6):1-6.


[11]Bernard Williams. 近年来热等静压(HIP)处理与应用发展趋势[J]. 粉末冶金技术, 2014, 32(6):464-470.


Bernard Williams. Recent trends in hot isostatic pressing (HIP): Processing and applications[J]. Powder Metallurgy Technology, 2014, 32(6):464-470.


[12]Ageev S V, Girshov V L. Hot isostatic pressing of metal powders[J]. Metallurgist, 2015, 59(7-8):647-652.


[13]Wei Q S, Xue P J, Liu G C, et al. Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(9-12):1667-1677.


[14]喻思, 郎利辉, 王刚,. 热等静压成形2A12铝合金粉末的数值模拟研究[J]. 粉末冶金工业, 2016, 26(2):17-22.


Yu S, Lang L H, Wang G, et al. Research on numerical simulation of 2A12 aluminum alloy manufactured by hot isostatic pressing[J]. Powder Metallurgy Industry, 2016, 26(2):17-22.


[15]郎利辉, 续秋玉, 张东星,. 钨合金粉末的热等静压数值模拟及验证[J]. 粉末冶金材料科学与工程, 2014, (6):839-846.


Lang L H, Xu Q Y, Zhang D X, et al. Numerical simulation and verification of tungsten alloy powders during hot isostatic pressing[J]. Materials Science and Engineering of Powder Metallurgy, 2014, (6):839-846.


[16]李玉敏. 不锈钢粉末热等静压成形模拟与包套设计研究[D]. 济南: 山东大学, 2015.


Li Y M. The Simulation and Coating Studying of Stainless Steel Powder Hot Isostatic Pressing[D]. Jinan: Shandong University, 2015.


[17]曲兵兵. 不锈钢粉末热等静压成形模拟与包套制造工艺研究[D]. 武汉: 华中科技大学, 2009.


Qu B B. Numerical Simulation for Stainless Steel Powder during the Process of Hot Isostatic Pressing and Studies on the Can Manufacturing[D]. Wuhan: Huazhong University of Science and Technology, 2009.


[18]郎利辉, 王刚, 布国亮,. 钛合金粉末热等静压数值模拟及性能研究[J]. 粉末冶金工业, 2015, 25(3):1-6.


Lang L H, Wang G, Bu G L, et al. Study of numerical simulation and mechanical properties of hot isostatic pressed titanium alloy powder[J]. Powder Metallurgy Industry, 2015, 25(3):1-6.


[19]段文,郎利辉,王刚,.基于数值模拟和遗传算法的粉末材料参数反求[J].锻压技术,2016,41(12):131-137.


Duan W, Lang L H, Wang G, et al. Inverse method of powder material parameters based on numerical simulation and genetic algorithm[J]. Forging & Stamping Technology, 2016, 41(12):131-137.


[20]谢红飙,解芃芃,肖宏,.不锈钢包覆铁屑复合轧制有限元模拟与实验[J].塑性工程学报,2016,23(1):69-72.


Xie H B, Xie P P, Xiao H, et al. Finite element simulation and experiment of composite rolling of stainless steel iron scrap[J]. Journal of Plasticity Engineering,2016, 23(1):69-72.


[21]刘国承, 史玉升, 魏青松,. 316L粉末热等静压致密化过程数值模拟[J]. 华中科技大学学报:自然科学版, 2011, 39(10):23-27.


Liu G C, Shi Y S, Wei Q S, et al. Numerical simulation of the densification of 316L powder during hot isostatic pressing[J]. J. Huazhong Univ.of Sci.& Tech.: Natural Science Edition, 2011, 39(10):23-27.


[22]Wei Q S, Xue P J, Liu G C, et al. Simulation and verification of near-net shaping a complex-shaped turbine disc by hot isostatic pressing process[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(9-12):1667-1677.


[23]Nguyen C V, Bezold A, Broeckmann C. Inclusion of initial powder distribution in FEM modelling of near net shape PM hot isostatic pressed components[J]. Powder Metallurgy, 2014, (4):295-303.


[24]Essa K, Khan R, Hassanin H, et al. An iterative approach of hot isostatic pressing tooling design for net-shape IN718 superalloy parts[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1835-1845.


[25]陈烨欣, 刘凯, 魏青松,. 氧化铝粉末热等静压致密化过程模拟与验证[J]. 粉末冶金技术, 2013, 31(3):174-179.


Chen Y X, Liu K, Wei Q S, et al. Simulation and experimental verification of the alumina powder HIP densification process[J]. Powder Metallurgy Technology, 2013, 31(3):174-179.


[26]熊威, 甘忠, 许旭东. 基于响应曲面的时效成形材料参数修正[J]. 航空制造技术, 2011, (19):72-75.


Xiong W, Gan Z, Xu X D. Material parameter modification for age forming simulation based on response surface model[J]. Aeronautical Manufacturing Technology, 2011, (19):72-75.


[27]李建波, 林皋, 陈健云. 复杂轮廓实体内级配随机颗粒的受控填充算法[J]. 计算机辅助设计与图形学学报, 2008, 20(11):1521-1526.


Li J B, Lin G, Chen J Y. A controllable filling method for random grading grains in the solid body with complex shape[J]. Journal of Computer-aided Design & Computer Graphics, 2008, 20(11):1521-1526.


[28]李少强, 陈志勇, 王志宏,. 一种快速凝固高温钛合金粉末的热等静压成形致密化过程及其机制研究[J]. 材料研究学报, 2013, 27(1):97-102.


Li S Q, Chen Z Y, Wang Z H, et al. The densification of rapid solidification high temperature titanium alloy powder by hot isostatic pressing[J]. Chinese Journal of Materials Research, 2013, 27(1):97-102.


[29]黄俊, 薛鹏举, 蔡超,. 两种热等静压工艺对Ti6Al4V合金力学性能影响的研究[J]. 稀有金属, 2016, 40(2):97-103.


Huang J, Xue P J, Cai C, et al. Mechanical properties of Ti6Al4V alloy prepared by two different hot isostatic pressing processes[J]. Chinese Journal of Rare Metals, 2016, 40(2):97-103.


[30]薛鹏举, 魏青松, 吴言,. TC4合金粉末热等静压零件表面形貌研究[J]. 华中科技大学学报:自然科学版, 2014, 42(1):1-4.


Xue P J, Wei Q S, Wu Y, et al. Study on surface morphology of TC4 alloy powder produced by hot isostatic pressing[J]. J. Huazhong Univ. of Sci. & Tech.: Natural Science Edition, 2014,42(1):1-4.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9